Skip to content

CHPC - Research Computing and Data Support for the University

In addition to deploying and operating high performance computational resources and providing advanced user support and training, CHPC serves as an expert team to broadly support the increasingly diverse research computing and data needs on campus. These needs include support for big data, big data movement, data analytics, security, virtual machines, Windows science application servers, protected environments for data mining and analysis of protected health information, and advanced networking.

If you are new to CHPC, the best place to start to get more information on CHPC resources and policies is our Getting Started page.

Upcoming Events:

CHPC Downtime: Tuesday March 5 starting at 7:30am

Posted February 8th, 2024


Two upcoming security related changes

Posted February 6th, 2024


Allocation Requests for Spring 2024 are Due March 1st, 2024

Posted February 1st, 2024


CHPC ANNOUNCEMENT: Change in top level home directory permission settings

Posted December 14th, 2023


CHPC Spring 2024 Presentation Schedule Now Available

CHPC PE DOWNTIME: Partial Protected Environment Downtime  -- Oct 24-25, 2023

Posted October 18th, 2023


CHPC INFORMATION: MATLAB and Ansys updates

Posted September 22, 2023


CHPC SECURITY REMINDER

Posted September 8th, 2023

CHPC is reaching out to remind our users of their responsibility to understand what the software being used is doing, especially software that you download, install, or compile yourself. Read More...

News History...

Mapping the Universe with CHPC Resources

By Joel Brownstein, Kyle Dawson, Gail Zasowski

Department of Physics and Astronomy, University of Utah

The Sloan Digital Sky Survey makes use of the University of Utah's Center for High Performance Computing (CHPC) parallel computing resources to help with its mission to map the Universe, from our Solar System through the Milky Way Galaxy, and beyond. Building on fifteen years of discovery, the fourth phase of SDSS (SDSS-IV) recently had two public data releases including DR14 earlier this year.

In SDSS-IV the survey expands its reach in three different ways:

  1. We observe a million stars in both the Northern and Southern skies by including a second telescope in Chile. SDSS now uses both the 2.5m Sloan telescope in New Mexico, and the 2.5m du Pont Telescope in Las Campanas, Chile.
  2. We observe millions of galaxies and quasars at previously unexplored distances to map the large-scale structure in the Universe 5 billion years ago, and to understand the nature of Dark Energy.
  3. We use new instrumentation to collect multiple high-resolution spectra within 10,000 nearby galaxies, to discover how galaxies grow and evolve over billions of years of cosmic history.

University of Utah astronomers are a core part of this international collaboration. Joel Brownstein, Professor of Physics and Astronomy, is the Principal Data Scientist, making sure that the SDSS data reduction pipelines run smoothly, and that the data products are easily accessible both within the team and publicly. Professor Kyle Dawson and postdoctoral fellows are also involved, working on instrumentation to map the distant Universe. Professor Gail Zasowski and her research group use SDSS observations of stars within our home Milky Way Galaxy to understand when and how they formed, and how our Galaxy is changing over time.

System Status

General Environment

last update: 2024-03-29 00:33:02
General Nodes
system cores % util.
kingspeak 926/972 95.27%
notchpeak 2069/3212 64.41%
lonepeak 3124/3140 99.49%
Owner/Restricted Nodes
system cores % util.
ash 1104/1128 97.87%
notchpeak 9705/18380 52.8%
kingspeak 2396/5308 45.14%
lonepeak 336/416 80.77%

Protected Environment

last update: 2024-03-29 00:30:02
General Nodes
system cores % util.
redwood 528/616 85.71%
Owner/Restricted Nodes
system cores % util.
redwood 2480/5980 41.47%


Cluster Utilization

Last Updated: 2/20/24