Introduction to I/O in the HPC Environment

Brian Haymore, brian.haymore@utah.edu
Sam Liston, sam.liston@utah.edu

Center for High Performance Computing
Fall 2010
Overview

- Topology
Overview

- SAN storage redundancy – RAID
- RAID = Redundant Array of Inexpensive Disks
Overview

• Types of storage available at CHPC
 – Home Directory (i.e. /uufs/chpc.utah.edu/common/home/uNID)
 • Per department backed up (except CHPC_HPC file system)
 • Intended for critical/volatile data
 • Expected to maintain a high level of responsiveness
 – Group Data Space (i.e. /uufs/chpc.utah.edu/common/home/pi_grp)
 • Optional per department archive
 • Intended for active projects, persistent data, etc.
 • Usage expectations to be set by group
 – Network Mounted Scratch (i.e. /scratch/serial)
 • No expectation of data retention (It’s scratch)
 • Expected to maintain a high level of I/O performance under significant load
 – Local Disk (i.e. /tmp)
 • Most consistent I/O
 • No expectation of data retention
 • Unique per machine
Overview

• Good Citizens
 – Shared Environment Characteristics
 • Many to one relationship (over-subscribed)
 • Globally accessible
 • Global resource are still finite
 • Consider your usage impact when choosing a storage location
 • Be aware of any usage policies
 • Evaluate different I/O methodologies
 • Seek additional assistance from CHPC
Best Practices

- Data Segregation; Where should files be stored?
 - Classify your Data
 - How important is it?
 - Can it be recreated?
 - Is this dataset currently in use?
 - Will this data be used by others?
 - Does this data need to be backed up?
 - Put your data in the appropriate space
 - Home Directory
 - Group Space
 - Scratch
 - /tmp
Considerations

- Backup Impact
 - Performance Characteristics
 - Time (when, duration)
 - Competition/concurrent access
 - Capacity of files backed up
 - Quantity of files backed up
 - Unintended consequences
Considerations

• Network Performance
Considerations

• Data Migration
 – What are we moving; What does it look like?
 – From where to where are we moving the data?
 – What transfer performance expectation do we have?
 – What tool will we use to make the transfer?
 • SSH/SFTP
 – Simple
 – Very portable
 • rsync
 – Restart able
 – File verification
 • tar via SSH
 – More efficient with many small files
 • Compression?
 • Secure
File Operations

• Directory Structure
 – Poor performance when too many files are in the same directory
 – Organizing files in a tree avoids this issue
 – Directory block count significance

• Network vs. Local
 – IOPS vs. Bandwidth
 – Network I/O
 • Overhead
 • Limited by network pipe
 • More efficient for bandwidth vs. IOPS
 – Local I/O
 • Limited size
 • Not globally accessible
 • Depending on hardware offers a fair balance between bandwidth and IOPS
File Operations

• Metadata Operations Performance Considerations
 – Create, Destroy, Stat, etc.
 – IOPS oriented performance

• Application I/O Performance Considerations
 – How often do we open and close files?
 – What I/O granularity do our applications write files?
 – Are we doing anything else silly?
Examples

• Code (user example)
 – Code wrote millions of small files (<10kB) to a single dir
 – Code wrote thousands of larger files (100s of MB)
 – Code uses a compression algorithm to speed up I/O of the larger files.

• Observations
 – Changing default r/w chunk of compression I/O from 16kB to 32kB/64kB improved performance 10%-20%.
 – Changing code to write files in a hierarchical directory structure produced a multiple times speed up.
Examples

- Single Directory vs. Hierarchical Directory Structure
Examples

- Processing Many Small Files over Network vs. Local

![Bar chart showing comparison between Network and Local processing times for 5000 3KB files. The Network has a real time of 125 seconds, with user and system times of 7 and 2 seconds, respectively. The Local has a real time of 16 seconds, with user and system times of 5 and 2 seconds.](http://www.chpc.utah.edu)
Examples

• Bonnie Test

![Bar chart showing performance metrics for different file systems and operations.](chart.png)

- Write with put_c unlocked
- Rewrite
- Write Intelligently
- Read with get_c unlocked
- Read Intelligently

48GB file
Examples

- Tar (Linux Kernel)
Examples

• Compile (Linux Kernel)
Examples

- Fine vs. Coarse I/O (Reads)

![Graph showing I/O performance vs. I/O size](image_url)
Examples

- Fine vs. Coarse I/O (Writes)
Troubleshooting

• Diagnosing Slowness
 – Open a ticket (issues@chpc.utah.edu)
 – File system
 – System load
 – Network load

• Future Monitoring
 – Ganglia

• Additional Information
 – http://www.chpc.utah.edu