Presentation

Introduction

MPI

Martin Cuma
Center for High Performance Computing
University of Utah
mcuma@chpc.utah.edu

October 20, 2005

http://www.chpc.utah.edu
Overview

• **Quick introduction** (in case you slept/missed last time)
• MPI concepts, initialization.
• Point-to-point communication.
• Collective communication.
• Grouping data for communication.
• **Quick glance at advanced topics.**
Distributed memory

- Process has access only to its local memory
- Data between processes must be communicated
- More complex programming
- Cheap commodity hardware
- CHPC: Linux clusters (Arches, Icebox), Sierra

http://www.chpc.utah.edu
MPI Basics

- Standardized message-passing library
 - uniform API
 - guaranteed behavior
 - source code portability
- Complex set of operations
 - various point-to-point communication
 - collective communication
 - process groups
 - processor topologies
 - software library development functions
Example 1

```fortran
program hello
integer i, n, ierr, my_rank, nodes
include "mpif.h"

call MPI_Init(ierr)
call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
call MPI_Comm_rank(MPI_COMM_WORLD,my_rank,ierr)
if (my_rank .eq. 0) then
  do i=1,nproc-1
    call MPI_Recv(n,1,MPI_INTEGER,i,0,MPI_COMM_WORLD,
&      status,ierr)
    print*, 'Hello from process', n
  enddo
else
  call MPI_Send(my_rank,1,MPI_INTEGER,0,0,MPI_COMM_WORLD,ierr)
endif
call MPI_Finalize(ierr)
return
```

4/13/2006 http://www.chpc.utah.edu
Program output

da1:~> %
 /uufs/delicatearch.arches/sys/bin/mpif77 ex1.f -o ex1

da1:~> % qsub -I -l nodes=2:ppn=2,walltime=1:00:00

da001:~> %
 /uufs/delicatearch.arches/sys/bin/mpirun.ch_gm
 -np 4 -machinefile $PBS_NODEFILE ex1

Hello from process 1
Hello from process 2
Hello from process 3
• must be included in subroutines and functions that use MPI calls
• provide required declarations and definitions
• Fortran – mpif.h
 ▪ declarations of MPI-defined datatypes
 ▪ error codes
• C – mpi.h
 ▪ also function prototypes
Basic MPI functions

- **Initializing MPI:**
 - MPI_Init(ierr)
 - int MPI_Init(int *argc, char **argv)

- **Terminating MPI**
 - MPI_Finalize(ierr)
 - int MPI_Finalize()

- **Determine no. of processes**
 - MPI_Comm_Size(comm, size, ierr)
 - int MPI_Comm_Size(MPI_comm comm, int* size)

- **Determine rank of the process**
 - MPI_Comm_Rank(comm, rank, ierr)
 - int MPI_Comm_Rank(MPI_comm comm, int* rank)
Basic point-to-point communication

• **Sending data**
 - MPI_Send(buf, count, datatype, dest, tag, comm, ierr)
 - int MPI_Send(void *buf, int count, MPI_Datatype, int dest, int tag, MPI_comm comm)
 call MPI_Send(my_rank,1,MPI_INTEGER,0,0,MPI_COMM_WORLD,ierr)

• **Receiving data**
 - MPI_Recv(buf, count, datatype, source, tag, comm, status, ierr)
 - int MPI_Recv(void *buf, int count, MPI_Datatype, int source, int tag,
 MPI_comm comm, MPI_Status status)
 call MPI_Recv(n,1,MPI_INTEGER,i,0,MPI_COMM_WORLD,status,ierr)
Message send/recv

- Data (buffer, count)
- Sender / Recipient
- Message envelope
 - data type – see next two slides
 - tag – integer to differentiate messages
 - communicator – group of processes that take place in the communication
 default group communicator – MPI_COMM_WORLD
Predefined data structures

<table>
<thead>
<tr>
<th>MPI Datatype</th>
<th>Fortran Datatype</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_BYTE</td>
<td></td>
</tr>
<tr>
<td>MPI_CHARACTER</td>
<td>CHARACTER</td>
</tr>
<tr>
<td>MPI_COMPLEX</td>
<td>COMPLEX</td>
</tr>
<tr>
<td>MPI_DOUBLE_PRECISION</td>
<td>DOUBLE PRECISION</td>
</tr>
<tr>
<td>MPI_REAL</td>
<td>REAL</td>
</tr>
<tr>
<td>MPI_INTEGER</td>
<td>INTEGER</td>
</tr>
<tr>
<td>MPI_LOGICAL</td>
<td>LOGICAL</td>
</tr>
<tr>
<td>MPI_PACKED</td>
<td></td>
</tr>
<tr>
<td>MPI Datatype</td>
<td>C Datatype</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>MPI_BYTE</td>
<td></td>
</tr>
<tr>
<td>MPI_CHAR</td>
<td>char</td>
</tr>
<tr>
<td>MPI_DOUBLE</td>
<td>double</td>
</tr>
<tr>
<td>MPI_FLOAT</td>
<td>float</td>
</tr>
<tr>
<td>MPI_INT</td>
<td>int</td>
</tr>
<tr>
<td>MPI_LONG</td>
<td>long</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>MPI_PACKED</td>
<td></td>
</tr>
</tbody>
</table>
Communication modes

• Four different
 ▪ standard: completion is system-dependent
 ▪ synchronous: send is not completed until the corresponding receive has started
 ▪ ready: send can be initiated only if the corresponding receive has been posted
 ▪ buffered: local, copies message into buffer and then sends it out

• NOTE: standard operations may not be buffered

• Contents of the send buffer can be safely modified after return from the send call
Nonblocking communication

- Initiates point-to-point operation and returns
 - overlap communication with computation
 - receive requires 2 function calls – initiate the communication, and finish it
 - all four communication modes available
 - usually completed at the point when the communicated data are to be used
 - consume system resources, which must be released (MPI_Wait, MPI_Test)
Example 2 – numerical integration

\[
\int_{a}^{b} f(x) \approx \sum_{i=1}^{n} \frac{1}{2} h [f(x_{i-1}) + f(x_{i})] = \frac{1}{2} h[f(x_{0}) + f(x_{n})] + \sum_{i=1}^{n-1} h[f(x_{i})]
\]
1. Initialize MPI
2. Get interval and no. of trapezoids
3. Broadcast input to all processes
4. Each process calculates its interval
5. Collect the results from all the processes

- Two new concepts:
 - collective communication – involves more processes
 - derived data types – more efficient data transfer
#include <stdio.h>
#include "mpi.h"

int main (int argc, char* argv[]){
 int p, my_rank, n , i , local_n;
 float a, b, h, x, integ, local_a, local_b, total;
 MPI_Datatype mesg_ptr;
 float f(float x);
 void Build_der_data_t(float *a,float *b,int *n,MPI_Datatype *mesg_ptr);

1. MPI_Init(&argc,&argv);
2. MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
3. MPI_Comm_size(MPI_COMM_WORLD,&p);
 if (my_rank == 0) {
 printf("Input integ. interval, no. of trap:\n");
 scanf("%f %f %d",&a,&b,&n);
 }
 Build_der_data_t(&a,&b,&n, &mesg_ptr);
 MPI_Bcast(&a,1,mesg_ptr,0,MPI_COMM_WORLD);
4. \[h = \frac{(b-a)}{n}; \quad \text{local}_n = \frac{n}{p}; \]
\[\text{local}_a = a + \text{my}_\text{rank} \times h \times \text{local}_n; \]
\[\text{local}_b = \text{local}_a + h \times \text{local}_n; \]
\[\text{integ} = \frac{(f(\text{local}_a)+f(\text{local}_b))}{2.}; \]
\[x = \text{local}_a; \]
\[\text{for} \ (i=1;i<\text{local}_n;i++) \{ \]
\[\quad x = x+h; \]
\[\quad \text{integ} = \text{integ} + f(x); \}
\[\text{integ} = \text{integ} \times h; \]
\[\text{printf}(\text{"Trapezoids n = %d, local integral from ",local}_n); \]
\[\text{printf}(\text{"%f to %f is %f\n"},\text{local}_a,\text{local}_b,\text{integ}); \]
\[\text{total} = 0.; \]
\[\text{MPI_Reduce}(&\text{integ},&\text{total},1,\text{MPI_FLOAT},\text{MPI_SUM},0,\text{MPI_COMM_WORLD}); \]
\[\text{if} \ (\text{my}_\text{rank} == 0) \]
\[\quad \text{printf}(\text{"Total integral = %f\n"},\text{total}); \]
\[\text{MPI_Finalize}(); \]
\[\text{return} \ 0; \} \]
Program output

da1:~>%/uufs/delicatearch.arches/sys//bin/mpicc trapp.c
 -o trapp
da001:~>%/uufs/delicatearch.arches/sys/bin/mpirun.ch_gm
 -np 4 -machinefile $PBS_NODEFILE trapp
Input integ. interval, no. of trap:
0 10 100
Trapezoids n = 25, local integral from 0.000000 to
 2.500000 is 5.212501
Total integral = 333.350098
Trapezoids n = 25, local integral from 2.500000 to
 5.000000 is 36.462475
Trapezoids n = 25, local integral from 5.000000 to
 7.500000 is 98.962471
Trapezoids n = 25, local integral from 7.500000 to
 10.000000 is 192.712646
Collective communication

- **Broadcast** – from one node to the rest
 - MPI_Bcast(buf, count, datatype, root, comm, ierr)
 - int MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int root, MPI_comm comm)

 On root, buf is data to be broadcast, on other nodes it's data to be received

- **Reduction** – collect data from all nodes
 - MPI_Reduce(sndbuf, rcvbuf, count, datatype, op, root, comm, ierr)
 - int MPI_Reduce(void *sndbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, int root, MPI_comm comm)

 `MPI_Reduce(&integ,&total,1,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD);`

 Supported operations, e.g. MPI_MAX, MPI_MIN, MPI_SUM,...
 Result stored in rcvbuf only on processor with rank root.
More collective communication

• Communication operations that involve more than one process
 ▪ broadcast from one process to all the others in the group
 ▪ reduction collect data from all the processes in certain manner (sum, max,...)
 ▪ barrier synchronization for all processes of the group
 ▪ gather from all group processes to one process
 ▪ scatter distribute data from one process to all the others
 ▪ all-to-all gather/scatter/reduce across the group

• NOTE: There is no implicit barrier before collective communication operations
Derived data types

- Used to group data for communication
- Built from basic MPI data types
- Must specify:
 - number of data variables in the derived type and their length (1,1,1)
 - type list of these variables (MPI_DOUBLE, MPI_DOUBLE, MPI_INT)
 - displacement of each data variable in bytes from the beginning of the message (0,24,56)
void Build_der_data_t(float *a, float *b,
 int *n, MPI_Datatype *msg_ptr) {

 int blk_len[3] = {1, 1, 1};
 MPI_Aint displ[3], start_addr, addr;
 MPI_Datatype typel[3] = {MPI_FLOAT, MPI_FLOAT, MPI_INT};

 displ[0] = 0;
 MPI_Address(a, &start_addr);
 MPI_Address(b, &addr);
 displ[1] = addr - start_addr;
 MPI_Address(n, &addr);
 displ[2] = addr - start_addr;

 MPI_Type_struct(3, blk_len, displ, typel, msg_ptr);
 MPI_Type_commit(msg_ptr);
}
Derived data types

• **Address displacement**
 - `MPI_Address(location, address)`
 - `int MPI_Address(void *location, MPI_Aint *address)`

• **Derived data type create**
 - `MPI_Type_Struct(count, bl_len, displ, typelist, new_mpi_t)`
 - `int MPI_Type_Struct(int count, int bl_len[], MPI_Aint displ[], MPI_Datatype typelist[], MPI_Datatype *new_mpi_t)`

  ```c
  MPI_Type_struct(3, blk_len, displ, typel, mesg_ptr);
  ```

• **Derived data type commit**
 - `MPI_Type_Commit(new_mpi_t)`
 - `int MPI_Type_Commit(MPI_Datatype *new_mpi_t)`
Derived data types

- Simpler d.d.t. constructors
 - MPI_Type_contiguous
 = contiguous entries in an array
 - MPI_Type_vector
 = equally spaced entries in an array
 - MPI_Type_indexed
 = arbitrary entries in an array
void Exch_data(float *a, float *b, int *n, int my_rank) {
 char buffer[100];
 int position = 0;

 if (my_rank == 0) {
 MPI_Pack(a, 1, MPI_FLOAT, buffer, 100, &position, MPI_COMM_WORLD);
 MPI_Pack(b, 1, MPI_FLOAT, buffer, 100, &position, MPI_COMM_WORLD);
 MPI_Pack(n, 1, MPI_INT, buffer, 100, &position, MPI_COMM_WORLD);
 MPI_Bcast(buffer, 100, MPI_PACKED, 0, MPI_COMM_WORLD);
 } else {
 MPI_Bcast(buffer, 100, MPI_PACKED, 0, MPI_COMM_WORLD);
 MPI_Unpack(buffer, 100, &position, a, 1, MPI_FLOAT, MPI_COMM_WORLD);
 MPI_Unpack(buffer, 100, &position, b, 1, MPI_FLOAT, MPI_COMM_WORLD);
 MPI_Unpack(buffer, 100, &position, n, 1, MPI_INT, MPI_COMM_WORLD);
 }
}
MPI_Pack/Unpack

- **Explicit storing of noncontiguous data for communication**
- **Pack – before send**
 - $\text{MPI_Pack}(\text{pack_data}, \text{in_cnt}, \text{datatype}, \text{buf}, \text{buf_size}, \text{position}, \text{comm}, \text{ierr})$
 - int $\text{MPI_Pack}(\text{void *pack_data}, \text{int in_cnt}, \text{MPI_Datatype datatype}, \text{void *buf}, \text{int buf_size}$,$\text{int *position}, \text{MPI_comm comm})$

 $\text{MPI_Pack}(\text{a}, \text{1}, \text{MPI_FLOAT}, \text{buffer}, \text{100}, &\text{position}, \text{MPI_COMM_WORLD});$

- **Unpack – after receive**
 - $\text{MPI_Unpack}(\text{buf}, \text{size}, \text{position}, \text{unpack_data}, \text{cnt}, \text{datatype}, \text{comm}, \text{ierr})$
 - int $\text{MPI_Unpack}(\text{void *buf}, \text{int size}, \text{int *position}, \text{void *unpack_data}, \text{int cnt}, \text{MPI_Datatype datatype}, \text{MPI_comm comm})$

- **position gets updated after every call to MPI_Pack/Unpack**

 $\text{MPI_Unpack}(\text{buffer, 100, &position, a, 1, MPI_FLOAT, MPI_COMM_WORLD});$

4/13/2006 http://www.chpc.utah.edu Slide 27
Which communication method to use

• count and datatype
 ▪ sending contiguous array or a scalar

• MPI_Pack/Unpack
 ▪ sending heterogeneous data only once
 ▪ variable length messages (sparse matrices)

• Derived data types
 ▪ everything else, including:
 ▪ repeated send of large heterogeneous data
 ▪ sending of large strided arrays
Advanced topics

- Advanced point-to-point communication
- Specialized collective communication
- Process groups, communicators
- Virtual processor topologies
- Error handling
- MPI I/O (MPI-2)
- Dynamic processes (MPI-2)
Summary

• Basics
• Point-to-point communication
• Collective communication
• Grouping data for communication

http://www.chpc.utah.edu/short_courses/intro_mpi
References

• MPI
 http://www-unix.mcs.anl.gov/mpi/
 Pacheco - Parallel Programming with MPI
 Gropp, Lusk, Skjellum – Using MPI 1, 2

• CHPC
 http://www.chpc.utah.edu/index.php?currentNumber=3.2.200
Security Policies

- No clear text passwords use ssh and scp
- You may not share your account under any circumstances
- Don’t leave your terminal unattended while logged into your account
- Do not introduce classified or sensitive work onto CHPC systems
- Use a good password and protect it
Security Policies

- Do not try to break passwords, tamper with files etc.
- Do not distribute or copy privileged data or software
- Report suspicions to CHPC (security@chpc.utah.edu)
- Please see http://www.chpc.utah.edu/docs/policies/security.html for more details
Future Presentations

• Debugging with Totalview
• Profiling with Vampir
• Mathematical Libraries at the CHPC
• MPI-IO
• Introduction to OpenMP
• Hybrid MPI/OpenMP programming
• Intermediate MPI (if interested)?