
 Archive Solutions at the Center for High Performance Computing
by Sam Liston (University of Utah)

The scale of the data housed at the Center for High Performance Computing (CHPC) has
dramatically increased over the past 10 years. This growth is partially due to lower storage cost
in terms of dollars/terabyte, and partially due to our ability to architect reliable cost-effective
storage solutions. As a result of this rapid growth, the backup capacities at CHPC have not
been able to scale at a proportional rate, leaving a good portion of the total data without backup.
In an attempt to mitigate this shortcoming CHPC has developed a disk based archive solution.
This archive, named Pando after the single organism glade of Aspen trees near Fish Lake,
Utah, will provide a place for researchers to store a secondary copy of their data.

Pando has 1.02PB of capacity. It provides greater resiliency characteristics than our other
storage systems and yet is offered at a lower cost; in addition it is much more accessible than a
traditional backup. With Pando researchers are responsible for moving data in and out of the
archive, removing some of the administrative burden in our current tape archive solution. As we

planned this solution we understood the scale of the system could eventually be vast and
therefore we wanted it to have the ability to scale to an immense size. In order to do that we
needed to find a solution that addressed the fundamental scaling issues that our current storage
solutions, based upon traditional file systems and RAID (Redundant Array of Independent
Disks) sets, have.

With the way that RAID is designed, as drive sizes increase the ability for those arrays to rebuild
after a failure in a timely fashion diminishes. Similarly as maximum file system capacities
increase, the time required to recover and repair a file system in the event of an error or
corruption also increases, to the point where it may require many days to find and repair the
errors. An alternative method to manage and organize files at massive scales is becoming
necessary.

As object storage addresses several of the design shortcomings of both RAID and file systems
in general. Object-based storage systems provide solutions to scaling issues inherent in very
large traditional file system and RAID implementation, CHPC focused on an object-based
system for our archive solution. Object storage abstracts the low-level operations away from the
user or administrator, putting these operations under the control of a layer of software. Block or
file level I/O are managed and facilitated by this software layer. With this abstraction layer the
fundamental unit of operation becomes the object instead of the file. In object-based storage
systems, both redundancy and resiliency are also moved away from the RAID controller or
individual file system into the object layer. Expensive RAID controllers are no longer needed,
and the worry that your very large, single file system may become corrupt and need repair,
becomes moot. Every object is replicated or made redundant according to configurable
parameters. One option is to have N number of replicated copies. Alternately, a particular factor
of erasure coding defined as K+M, in which an object is broken up into K data chunks which are
distributed across the system along with M additional resiliency chunks added for data
protection and reconstruction can be chosen. In this architecture the resiliency provided by a
RAID controller and its parity or mirroring protection becomes unnecessary, and in many cases
becomes a hindrance to performance. Every drive in the system becomes an individual file
system. If the file system on a single drive becomes corrupt, that drive is logically removed from
the system, the file system is created again and then logically added back in, thereby
eliminating the need for a file system check. After the freshly recreated file system is added
back in, objects or object chunks are redistributed to that file system to maintain the configured
level of redundancy.

In looking for a very cost-effective object-based storage solutions we discovered an open
source product developed at UC - Santa Cruz called Ceph. Ceph was originally conceived as
the doctoral dissertation of Sage Weil. After graduation in 2007 Sage worked to develop Ceph
full-time. In 2012 Sage formed the company Inktank Storage, to provide professional services
and support for Ceph. In 2014 Red Hat purchased Inktank and moved much of the
development under their umbrella. Ceph continues to also be backed by a strong community,
providing development, bug fixes and support.

The beauty of Ceph is in its design. First, a universal blob of object storage is created on the
backend hardware. It is merely an organized mass of capacity. Second, pools are created on
top of that hardware to give some structure to that blob. Inside these pools information like user
keys and logs as well as the data payloads are stored. After pools are created, the backend to
Ceph is ready to be expressed. There are three main methods the backend storage can be
expressed: block, file, or through the Amazon S3 API. One method could be chosen or all
three. It is possible to have a set of pools being expressed as block for VM access, another set
of pools being expressed as files so that they can be NFS or SMB/CIFS exported to clients, and
a third set of pools being expressed through S3 for archive purposes or web access.

The Pando archive project provided CHPC an opportunity to explore relatively new technologies
like Ceph. The process of understanding, vetting and implementing this new technology
happened over a few years. The process was quite thorough and involved building several test
storage clusters, the result being a quality solution that is more resilient and redundant than our
standard storage systems at a lower price per terabyte.

Ceph Hardware Configuration and the CHPC Installation

The architecture of our initial purchase is laid out in the figure above. The choices made were a
reflection of the budget we had for the project. The first choice was to determine the level of
redundancy; the choice was to use 6+3 erasure coding.

With 6+3 erasure coding, in order to ensure that no two chunks of data are placed on
overlapping hardware requires a minimum of nine - storage servers, called Object Storage
Devices or OSDs, therefore our initial implementation uses nine object storage servers.

Normally in an archive solution large drive-count storage servers are used to dramatically drive
the dollars/TB very low. Storage servers with 84 and 90 drives are common. With our limited
budget for this project and in an effort to meet the requirements laid out by our desired level of
erasure coding we selected a smaller drive-count storage server. These nine servers contain
16 8TB drives each. There is another caveat and benefit to fewer drives per server: the Ceph
community recommends having 2GB of RAM per drive in the system. With a large drive-count
server, the cost for the amount of recommended RAM became prohibitive. An additional
benefit to a smaller drive count is there is a smaller ratio between CPU horsepower and number
of drives. Too many drives and the servers may struggle under heavy I/O load to keep up. Too
few drives per server and CPU resources can be wasted. Through testing and the initial use by
users we believe that our servers are slightly underused. In future expansion we would like to
explore servers with 32-45 drives attached. With 6+3 erasure coding it is possible to have three
whole servers full of disks fail and not experience data loss. In the event of such a failure there
would be a large data storm as the remaining members immediately begin the work of
redistributing the data chunks to regain the configured level of redundancy. As the drive counts
per server go up so does the magnitude of this storm.

In front of the nine storage servers are three monitor nodes. The monitor nodes are the
coordinators of a Ceph storage cluster. Three is minimum number of monitors for a production
cluster. Beyond three, your number of monitors can scale with the size of your cluster. As
monitors create and maintain quorum between the members, having an odd number of monitors
is recommended. The monitor nodes keep and maintain the map of the objects in the system.
This map is kept stateful and synced between all monitors. Unless the storage cluster is being
expressed via CEPHFS, there is no metadata per se. When a user requests a particular object
from the archive the client machine that the request was made from contacts one of the monitor
node and asks for the map. With the map the client machine calculates the location of the
desired object, using the CRUSH (Controlled Replication Under Scalable Hashing) algorithm. It
then interacts directly with the storage server hosting that object. Once the client has the map it
no longer interacts with the monitor nodes, keeping their workload minimal and pushing that
workload out to a client. Without traditional metadata operations which often become the
bottleneck for traditional, distributed and parallel file systems, a Ceph storage cluster can scale
to extremely large numbers of objects. If orchestrating access of objects became too great for

the existing monitors, additional monitors could easily be added and the cumulative load
redistributed among the members.

There are two more machines that complete the cluster. The first, an admin node provides a
place to orchestra installation and configuration. The second, a RADOS (Reliable Autonomic
Distributed Object Store) Gateway node used for user access to the data via a S3 interface
(more below). Backend operations on the Ceph cluster are handled using the underlying
RADOS software layer. RADOS can be directly interacted with, but is quite awkward and not at
all user friendly. It is possible to have multiple RADOS Gateway machines, and we will look to
implement this in a future expansion. In our initial load testing, it quickly became apparent that a
single RADOS Gateway is the bottleneck of our current system. Under a heavy load the RADOS
Gateway tops out around 5.0gb/s. At this level of throughput the backend resources are only
showing around 10%-15% utilization. We theorize having 4-5 properly load balanced RADOS
Gateways in front of our current Ceph cluster would allow the system to better utilize the
backend resources and allow it to get around 20gb/s aggregate throughput to and from the
cluster.

Ceph allows for easy expansion of the backend object storage simply by the addition of more
storage. It also allows for transparent migration of data as old hardware is vacated, retired and
new hardware is added and populated. In most traditional storage systems the data must be
manually migrated from one generation of hardware to the next. Ceph handles this seamlessly.
This feature was key in developing an archive that could be in production through a period of
time that extends beyond the various vendor warranty lengths and through several generations
of hardware.

We chose S3 as the method to express our archive solution. There were two main points in our
reasoning that lead us to S3. First, as an archive solution the design goal was for longevity over
performance, so expressing the Ceph Archive in a way that it could not be mounted on CHPC
compute resources, where users could inadvertently write the output from their batch
computational runs to it, became important. Second, we wanted the archive to be perceived as
an island, fully separated from home, group and scratch disk spaces, in order to differentiate it
from other mounted file systems. As our archive was to be a “self-serve” archive we wanted to
make moving data in and out of it a deliberate process. An additional motivation towards S3
was the fact that the POSIX file method of expressing the data was not certified at a production
level at the time of our implementation. Since then the file interface (CephFS) has been further
developed and moved to a full production state, therefore, it is likely that in the future we will
explore implementing CephFS. Implementation of the CephFS interface would require an
additional server. As Ceph does not employ the use of metadata, this hardware would act as a
metadata translator, offering metadata information necessary for POSIX interactions outward to
the clients and Ceph calls inward to the object storage.

In order to ensures proper, balanced object disbursement and configured redundancy across
the storage cluster, Ceph uses the concept of placement groups. When a Ceph cluster is first

configured, after the various pools are created, those pools are configured with a certain
number of placement groups. The number of placement groups in a pool depends on the
number of OSDs (object storage daemons) in the cluster. An OSD is the atomic storage piece
in a Ceph cluster. Most often there is a one to one relation between number of individual drives
and number of OSDs. It is possible for an OSD to relate to a RAID set of drives, but this is quite
uncommon and not recommended. As the number of OSDs in a cluster increases so does the
number of placement groups. To illustrate how placement groups function we will use a pool
that is configured for three-way replication. Placement groups defined in this configuration will
have three OSDs assigned to them, a primary and two secondaries. As an object is written the
client calculates, after retrieving the map, which placement group this object should be placed
in. The client then interacts directly with the primary OSD in that placement group to write out
the object. Once the object is written to the primary OSD, it facilitates the replication of the
object to the other two secondary OSDs. When placement groups are established data locality,
particularly across configured failure domains, is considered. In the case of a failure that
causes OSDs to go missing, new OSDs are assigned to placement groups that lost a member.
The objects that the missing OSD contained are then replicated to the newly assigned member.
Due to the relatively small capacity our initial implementation, we have only enabled failure
domains at the server level, ensuring placement groups properly distribute object evenly across
the storage servers. As Pando grows we will look at expanding the failure domain
configurations to respect disparate racks, or rows of racks, or disparate rooms or datacenters.

Use of CHPC Pando Archive Storage

CHPC recommends three tools to use to interact with Pando.

1. S3cmd: S3cmd is a command-line tool for interacting with s3 storage. S3cmd moves
data in and out of an s3 platform in a serial fashion, so it does not excel in data transfer
performance. What s3cmd is good for is manipulating object properties in an object
storage solution. With s3cmd, object ownership and permissions can be changed and
sharing enabled.

2. Rclone: This tool developed by Nick Craig-Wood was designed to interact with a variety
of cloud-based storage platforms and local storage. It acts very much like a parallel
rsync for cloud resources. Rclone parallelizes flows very well. We have seen excellent
throughput transferring files both in and out of Pando, as well as to public cloud
platforms. Rclone excels at data transfer, but has no abilities to manipulate object
ownership or permission properties.

3. Globus: Globus has developed an endpoint specifically to put in front of a RADOS
Gateway. The Globus Ceph endpoint offers the most user-friendly interface into Pando
of the three transfer tools. All the normal functions of a Globus endpoint are available in
the Ceph version, including sharing.

