
 Archive Solutions at the Center for High Performance Computing 
by Sam Liston (University of Utah) 

  
The scale of the data housed at the Center for High Performance Computing (CHPC) has               
dramatically increased over the past 10 years. This growth is partially due to lower storage cost                
in terms of dollars/terabyte, and partially due to our ability to architect reliable cost-effective              
storage solutions. As a result of this rapid growth, the backup capacities at CHPC have not                
been able to scale at a proportional rate, leaving a good portion of the total data without backup.                  
In an attempt to mitigate this shortcoming CHPC has developed a disk based archive solution.               
This archive, named Pando after the single organism glade of Aspen trees near Fish Lake,               
Utah, will provide a place for researchers to store a secondary copy of their data. 

 
Pando has 1.02PB of capacity. It provides greater resiliency characteristics than our other             
storage systems and yet is offered at a lower cost; in addition it is much more accessible than a                   
traditional backup. With Pando researchers are responsible for moving data in and out of the               
archive, removing some of the administrative burden in our current tape archive solution. As we               



planned this solution we understood the scale of the system could eventually be vast and               
therefore we wanted it to have the ability to scale to an immense size. In order to do that we                    
needed to find a solution that addressed the fundamental scaling issues that our current storage               
solutions, based upon traditional file systems and RAID (Redundant Array of Independent            
Disks) sets, have.  

  
With the way that RAID is designed, as drive sizes increase the ability for those arrays to rebuild                  
after a failure in a timely fashion diminishes. Similarly as maximum file system capacities              
increase, the time required to recover and repair a file system in the event of an error or                  
corruption also increases, to the point where it may require many days to find and repair the                 
errors. An alternative method to manage and organize files at massive scales is becoming              
necessary.  

 
As object storage addresses several of the design shortcomings of both RAID and file systems               
in general. Object-based storage systems provide solutions to scaling issues inherent in very             
large traditional file system and RAID implementation, CHPC focused on an object-based            
system for our archive solution. Object storage abstracts the low-level operations away from the              
user or administrator, putting these operations under the control of a layer of software. Block or                
file level I/O are managed and facilitated by this software layer. With this abstraction layer the                
fundamental unit of operation becomes the object instead of the file. In object-based storage              
systems, both redundancy and resiliency are also moved away from the RAID controller or              
individual file system into the object layer. Expensive RAID controllers are no longer needed,              
and the worry that your very large, single file system may become corrupt and need repair,                
becomes moot. Every object is replicated or made redundant according to configurable            
parameters. One option is to have N number of replicated copies. Alternately, a particular factor               
of erasure coding defined as K+M, in which an object is broken up into K data chunks which are                   
distributed across the system along with M additional resiliency chunks added for data             
protection and reconstruction can be chosen. In this architecture the resiliency provided by a              
RAID controller and its parity or mirroring protection becomes unnecessary, and in many cases              
becomes a hindrance to performance. Every drive in the system becomes an individual file              
system. If the file system on a single drive becomes corrupt, that drive is logically removed from                 
the system, the file system is created again and then logically added back in, thereby               
eliminating the need for a file system check. After the freshly recreated file system is added                
back in, objects or object chunks are redistributed to that file system to maintain the configured                
level of redundancy.  

 
In looking for a very cost-effective object-based storage solutions we discovered an open             
source product developed at UC - Santa Cruz called Ceph. Ceph was originally conceived as               
the doctoral dissertation of Sage Weil. After graduation in 2007 Sage worked to develop Ceph               
full-time. In 2012 Sage formed the company Inktank Storage, to provide professional services             
and support for Ceph. In 2014 Red Hat purchased Inktank and moved much of the               
development under their umbrella. Ceph continues to also be backed by a strong community,              
providing development, bug fixes and support. 



 
The beauty of Ceph is in its design. First, a universal blob of object storage is created on the                   
backend hardware. It is merely an organized mass of capacity. Second, pools are created on               
top of that hardware to give some structure to that blob. Inside these pools information like user                 
keys and logs as well as the data payloads are stored. After pools are created, the backend to                  
Ceph is ready to be expressed. There are three main methods the backend storage can be                
expressed: block, file, or through the Amazon S3 API. One method could be chosen or all                
three. It is possible to have a set of pools being expressed as block for VM access, another set                   
of pools being expressed as files so that they can be NFS or SMB/CIFS exported to clients, and                  
a third set of pools being expressed through S3 for archive purposes or web access.  
 
The Pando archive project provided CHPC an opportunity to explore relatively new technologies             
like Ceph. The process of understanding, vetting and implementing this new technology            
happened over a few years. The process was quite thorough and involved building several test               
storage clusters, the result being a quality solution that is more resilient and redundant than our                
standard storage systems at a lower price per terabyte.  
 
Ceph Hardware Configuration and the CHPC Installation 

 



 
 

The architecture of our initial purchase is laid out in the figure above. The choices made were a                  
reflection of the budget we had for the project. The first choice was to determine the level of                  
redundancy; the choice was to use 6+3 erasure coding. 
 
With 6+3 erasure coding, in order to ensure that no two chunks of data are placed on                 
overlapping hardware requires a minimum of nine - storage servers, called Object Storage             
Devices or OSDs, therefore our initial implementation uses nine object storage servers. 
 
Normally in an archive solution large drive-count storage servers are used to dramatically drive              
the dollars/TB very low. Storage servers with 84 and 90 drives are common. With our limited                
budget for this project and in an effort to meet the requirements laid out by our desired level of                   
erasure coding we selected a smaller drive-count storage server. These nine servers contain             
16 8TB drives each. There is another caveat and benefit to fewer drives per server: the Ceph                 
community recommends having 2GB of RAM per drive in the system. With a large drive-count               
server, the cost for the amount of recommended RAM became prohibitive. An additional             
benefit to a smaller drive count is there is a smaller ratio between CPU horsepower and number                 
of drives. Too many drives and the servers may struggle under heavy I/O load to keep up. Too                  
few drives per server and CPU resources can be wasted. Through testing and the initial use by                 
users we believe that our servers are slightly underused. In future expansion we would like to                
explore servers with 32-45 drives attached. With 6+3 erasure coding it is possible to have three                
whole servers full of disks fail and not experience data loss. In the event of such a failure there                   
would be a large data storm as the remaining members immediately begin the work of               
redistributing the data chunks to regain the configured level of redundancy. As the drive counts               
per server go up so does the magnitude of this storm.  

 
In front of the nine storage servers are three monitor nodes. The monitor nodes are the                
coordinators of a Ceph storage cluster. Three is minimum number of monitors for a production               
cluster. Beyond three, your number of monitors can scale with the size of your cluster. As                
monitors create and maintain quorum between the members, having an odd number of monitors              
is recommended. The monitor nodes keep and maintain the map of the objects in the system.                
This map is kept stateful and synced between all monitors. Unless the storage cluster is being                
expressed via CEPHFS, there is no metadata per se. When a user requests a particular object                
from the archive the client machine that the request was made from contacts one of the monitor                 
node and asks for the map. With the map the client machine calculates the location of the                 
desired object, using the CRUSH (Controlled Replication Under Scalable Hashing) algorithm. It            
then interacts directly with the storage server hosting that object. Once the client has the map it                 
no longer interacts with the monitor nodes, keeping their workload minimal and pushing that              
workload out to a client. Without traditional metadata operations which often become the             
bottleneck for traditional, distributed and parallel file systems, a Ceph storage cluster can scale              
to extremely large numbers of objects. If orchestrating access of objects became too great for               



the existing monitors, additional monitors could easily be added and the cumulative load             
redistributed among the members.  

 
There are two more machines that complete the cluster. The first, an admin node provides a                
place to orchestra installation and configuration. The second, a RADOS (Reliable Autonomic            
Distributed Object Store) Gateway node used for user access to the data via a S3 interface                
(more below). Backend operations on the Ceph cluster are handled using the underlying             
RADOS software layer. RADOS can be directly interacted with, but is quite awkward and not at                
all user friendly. It is possible to have multiple RADOS Gateway machines, and we will look to                 
implement this in a future expansion. In our initial load testing, it quickly became apparent that a                 
single RADOS Gateway is the bottleneck of our current system. Under a heavy load the RADOS                
Gateway tops out around 5.0gb/s. At this level of throughput the backend resources are only               
showing around 10%-15% utilization. We theorize having 4-5 properly load balanced RADOS            
Gateways in front of our current Ceph cluster would allow the system to better utilize the                
backend resources and allow it to get around 20gb/s aggregate throughput to and from the               
cluster.  

 
Ceph allows for easy expansion of the backend object storage simply by the addition of more                
storage. It also allows for transparent migration of data as old hardware is vacated, retired and                
new hardware is added and populated. In most traditional storage systems the data must be               
manually migrated from one generation of hardware to the next. Ceph handles this seamlessly.              
This feature was key in developing an archive that could be in production through a period of                 
time that extends beyond the various vendor warranty lengths and through several generations             
of hardware.  

 
We chose S3 as the method to express our archive solution. There were two main points in our                  
reasoning that lead us to S3. First, as an archive solution the design goal was for longevity over                  
performance, so expressing the Ceph Archive in a way that it could not be mounted on CHPC                 
compute resources, where users could inadvertently write the output from their batch            
computational runs to it, became important. Second, we wanted the archive to be perceived as               
an island, fully separated from home, group and scratch disk spaces, in order to differentiate it                
from other mounted file systems. As our archive was to be a “self-serve” archive we wanted to                 
make moving data in and out of it a deliberate process. An additional motivation towards S3                
was the fact that the POSIX file method of expressing the data was not certified at a production                  
level at the time of our implementation. Since then the file interface (CephFS) has been further                
developed and moved to a full production state, therefore, it is likely that in the future we will                  
explore implementing CephFS. Implementation of the CephFS interface would require an           
additional server. As Ceph does not employ the use of metadata, this hardware would act as a                 
metadata translator, offering metadata information necessary for POSIX interactions outward to           
the clients and Ceph calls inward to the object storage.  
 
In order to ensures proper, balanced object disbursement and configured redundancy across            
the storage cluster, Ceph uses the concept of placement groups. When a Ceph cluster is first                



configured, after the various pools are created, those pools are configured with a certain              
number of placement groups. The number of placement groups in a pool depends on the               
number of OSDs (object storage daemons) in the cluster. An OSD is the atomic storage piece                
in a Ceph cluster. Most often there is a one to one relation between number of individual drives                  
and number of OSDs. It is possible for an OSD to relate to a RAID set of drives, but this is quite                      
uncommon and not recommended. As the number of OSDs in a cluster increases so does the                
number of placement groups. To illustrate how placement groups function we will use a pool               
that is configured for three-way replication. Placement groups defined in this configuration will             
have three OSDs assigned to them, a primary and two secondaries. As an object is written the                 
client calculates, after retrieving the map, which placement group this object should be placed              
in. The client then interacts directly with the primary OSD in that placement group to write out                 
the object. Once the object is written to the primary OSD, it facilitates the replication of the                 
object to the other two secondary OSDs. When placement groups are established data locality,              
particularly across configured failure domains, is considered. In the case of a failure that              
causes OSDs to go missing, new OSDs are assigned to placement groups that lost a member.                
The objects that the missing OSD contained are then replicated to the newly assigned member.               
Due to the relatively small capacity our initial implementation, we have only enabled failure              
domains at the server level, ensuring placement groups properly distribute object evenly across             
the storage servers. As Pando grows we will look at expanding the failure domain              
configurations to respect disparate racks, or rows of racks, or disparate rooms or datacenters.  
 
Use of CHPC Pando Archive Storage   
 
CHPC recommends three tools to use to interact with Pando.  

1. S3cmd: S3cmd is a command-line tool for interacting with s3 storage. S3cmd moves             
data in and out of an s3 platform in a serial fashion, so it does not excel in data transfer                    
performance. What s3cmd is good for is manipulating object properties in an object             
storage solution. With s3cmd, object ownership and permissions can be changed and            
sharing enabled.  

2. Rclone: This tool developed by Nick Craig-Wood was designed to interact with a variety              
of cloud-based storage platforms and local storage. It acts very much like a parallel              
rsync for cloud resources. Rclone parallelizes flows very well. We have seen excellent             
throughput transferring files both in and out of Pando, as well as to public cloud               
platforms. Rclone excels at data transfer, but has no abilities to manipulate object             
ownership or permission properties.  

3. Globus: Globus has developed an endpoint specifically to put in front of a RADOS              
Gateway. The Globus Ceph endpoint offers the most user-friendly interface into Pando            
of the three transfer tools. All the normal functions of a Globus endpoint are available in                
the Ceph version, including sharing. 

 
  


