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How predictable is evolution? This question has been asked and 
answered in various ways. Studies of parallel and convergent 
evolution have shown that species can predictably evolve 
similar phenotypes in response to similar environmental 
challenges, and that this sometimes even involves the same 
genes or mutations. On the other hand, scientists have argued 
that major external phenomena, such as cataclysmic meteor 
strikes and climate cycles, render long-term patterns of 
evolution unpredictable. Thus, evolution can be predictable to 
different degrees depending on the scale and specific features 
one is interested in.

The Gompert lab at Utah State University thinks a lot about 
predictability, both in terms of the predictability of evolution, 
and in terms of predicting phenotypes (i.e., trait values) from 
genetic/genomic data. In other words, we want to be able to 
predict traits from genes, and to predict how such traits and 
the underlying gene/allele frequencies change. And when we 
can’t do these things, we want to understand why. Our work 
often relies on computationally intensive statistical modelling 
and simulations, which we use both to develop theory and to 
fit models. This requires access to large numbers of compute 
nodes, and in some cases large amounts of memory, substantial 
disk space and long running jobs, all of which have been made 
possible by USU’s partnership with the University of Utah CHPC 
(UofU CHPC). Here I will outline some of our recent work that 
has been facilitated by the computational resources at the UofU 
CHPC.

Predicting traits (butterfly wing pattern) from DNA 
sequences

Predicting phenotypes (trait values) from genetic data is a key 
goal in biology; indeed, predicting traits from DNA sequences 
was one of the five grand challenges in biology recently 
articulated by NSF. Despite considerable efforts, it is still hard to 
predict trait values from genetic data,  particularly for complex 
or quantitative traits. This difficulty arises from the fact that 
many genetic loci often contribute to trait variation and this  
frequently includes many rare genetic variants, genetic loci with 
small effects, or genetic loci with effects that depend on the 
environment or genetic background in which they are found. 
Understanding the genetics of complex trait variation within 
and between species is particularly difficult, as it necessitates 

genetic mapping in structured populations, which can 
confound attempts to identify causal genetic variants. 
Statistical models, such as recently developed Bayesian 
models for variable selection and genomic prediction (e.g., 
Bayesian sparse linear mixed models, Zhou et al. 2013) 
exist to overcome some of these issues. But such methods 
involve fitting hierarchical Bayesian models with hundreds 
of thousands to millions of model parameters using Markov 
chain Monte Carlo techniques, which necessitates substantial 
computational resources. 

We recently used CHPC resources to apply such models and 
methods to generate genome-estimated trait values for 
many wing pattern characters for over a thousand  Lycaeides 
butterflies sampled from multiple closely related species (see 
Figure 1). Using these genome-estimated trait values, we 
were then able to apply evolutionary quantitative genetic 
methods to quantify the role of genetic constraints in shaping 
patterns of wing pattern evolution.

Predicting Trait Values and Evolutionary Change from DNA Sequences

Spring 2018

Figure 1. Stylized drawings of wings.

(a) shows the pattern elements measured. Size and position 
were measured for the labeled elements, and stars denote 
additional landmark positions along wing veins. (b)--(d) 
show our modularity hypotheses where black lines divide 
the wings into sections; pattern elements within a section 
are constrained by a shared genetic basis while elements 
across sections are not. (e)--(l) show drawings from each 
taxon that are meant to highlight key differences in wing 
patterns among groups. Drawings by Amy Springer.

https://gompertlab.wordpress.com/
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We generated genome-estimated trait values for 69 wing pattern 
characters (the sizes and positions of wing pattern spots and veins) 
for >1000 butterflies, with analyses repeated at different taxonomic 
scales (there were 828 mapping analyses total). This was done with the 
free, open source program gemma, which implements computational 
approaches to fit Bayesian sparse linear mixed models. Each analysis 
generated predictions based on approximately 60,000 genetic markers 
(single nucleotide polymorphisms or SNPs) and required 5 million 
Markov chain Monte Carlo steps (five chains with 1 million iterations 
each).  This approach and algorithm provide a means to numerically 
integrate and sample from the posterior probability distribution of 
these model parameters, which in this case, is a space with >100,000 
dimensions. Running these analyses, which were spread across dozens 
of compute nodes and cores, required approximately 10,000 computer 
hours or over 400 computer days. Such analyses would be intractable 
without access to a large-scale computer cluster like the UofU CHPC. 
By combining the output from these runs, we were able to generate 
genetic variance-covariance matrices for the set of wing pattern 
traits, which we could then subject to thousands of random selection 
vectors to assess the extent to which the evolution of these traits was 
constrained by genetic covariances, and whether such within species 
constraints predicted patterns of among species divergence. 

We found that wing pattern was polygenic with mostly minor effect 
loci. We identified conserved modules of integrated wing pattern 
elements within populations and species, and showed that trait 
covariances within modules have a genetic basis, and thus represent 
genetic constraints that can channel evolution (Figure 2). Consistent 
with this, we found evidence that evolutionary changes in wing 
patterns among populations and species occurred in the directions of 
genetic covariances within these groups. Thus, we were able to show 
that genetic constraints affect patterns of biological diversity (wing 
pattern) in Lycaeides, and provide an analytical template for similar 
work in other systems. Our paper describing these results is coming out 
soon in a special issue on trait mapping in Molecular Ecology Resources 
(Lucas et al., 2018).

Figure 2. Heat map of example genetic correlation matrices. 

L = Lycaeides species complex, L-AN = Lycaeides anna, and L-ID-GNP = 
L. idas, Garnet Peak population. Roman numerals denote different sets of 
traits: (i) = orange spot size, (ii) = black spot size, (iii) = orange spot position, 
(iv) = spot position, and (v) = wing vein position.

Natural selection and predicting evolutionary 
change

One expects evolutionary change to be more 
predictable when it is driven mostly by natural 
selection. Thus, one key component of our research 
is trying to estimate and parse the contribution of 
selection to evolutionary change, particularly from 
evolutionary time series data. Evolutionary time series 
data include trait of gene/allele frequency data from 
multi-generational lab or field experiments or natural 
populations sampled across populations, as well as 
data associating genotypes or trait values with survival 
or other fitness components within generations (i.e., 
from mark-release-recapture experiments). We have 
applied such methods to stick insects, seed beetles, 
butterflies and simulated data. To infer selection 
from time series data we frequently use approximate 
Bayesian computation.

In standard Bayesian inference, the likelihood of the 
data given some model parameters is combined 
with prior probabilities of the parameters to yield 
a posterior distribution, that is a multi-dimensional 
probability distribution specifying the probabilities 
of different parameter values for all of the model 
parameters conditional on the data. For some models, 
the likelihood function is either unknown or not 
easily computed. In such cases, approximate Bayesian 
computation can be used, as it replaces the likelihood 
function with an evaluation of data simulated under 
the model. Specifically, parameter values for the model 
are drawn from their prior distributions, these are then 
used to parameterize a simulation of evolution, and 
finally summaries of the evolutionary time series from 
the simulations are computed and compared to the 
real data.  Parameter values from the simulations that 
best recreate some aspects of the true data are then 
used to learn about or inform our knowledge of the 
true posterior distribution. This approach allows us to 
tailor simulations to the particular details and history 
of an evolution experiment, including details of the 
data-generation process. 

Approximate Bayesian computation requires many 
simulations to generate even a few combinations of 
model parameter values that  generate output similar 
to the real data. For example, an ongoing project with 
seed beetles in our lab has relied on approximately 
1 billion simulations of evolution for a 16 generation 
time series. Even when each simulation is relatively 
quick, this requires substantial computational time 
and effort. On the other hand, these simulations are 
easy to parallelize and thus have benefited greatly 
from the large numbers of nodes and cores on the CHPC.
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Figure 3. Estimates of selection on individual genes in a 
novel (lentil) and ancestral (reversion) host.

Points are colored to reflect whether the evolutionary dynamics 
for each gene most likely reflect selection in lentil only (LCN), 
selection in reversion only (RCN), opposing selection between 
hosts (AP), similar selection on both hosts (PP), neutral 
evolution (Neu), or unknown or uncertain processes (Unk).

Using approximate Bayesian computation we have shown 
that adaptation to a novel host in seed beetles involves 
genetic trade-offs, such that genetic variants favored on the 
novel host (in this case lentil beans) were selected against 
on the ancestral host (in this case mung beans) (Figure 
3; Gompert & Messina, 2016). Such trade-offs enhance 
the predictability of evolution. And in a paper our group 
published in a recent issue of Science, we used approximate 
Bayesian computation to show how selection in stick insects 
varies across different life history stages (Nosil et al., 2018). This 
variation increases the complexity and thereby reduces the 
predictability of evolution. These simulation-based inference 
of the evolutionary process allow one to consider models of 
arbitrary complexity and to let the process of interest dictate 
the model rather than trying to cram data into a simpler 
analytical framework. By using these approaches, we have 
begun to identify key determinants of the predictability of 
evolution, and have done so in a way that can be scaled up 
to larger and larger genomic data sets.
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All presentations are held 
in the INSCC Auditorium, 
starting at 1pm. 

Date Presentation Title Presenters

May 17 Introduction to HPC* Anita Orendt
* = 1 hour May 22 Introduction to Linux, Part 1** Brett Milash & Wim Cardoen
** = 2 hours, Hands -on May 24 Introduction to Linux, Part 2** Brett Milash & Wim Cardoen
*** = 9am-3pm, w/ 
break for lunch

May 31 Introduction to Linux, Part 3** Brett Milash & Wim Cardoen

June 4-7 XSEDE Summer Bootcamp *** Wim Cardoen
See https://www.chpc.utah.edu/
presentations/ for details on 
trainings.

June 12 Introduction to Linux, part 4** Wim Cardoen & Brett Milash

June 14 Module Basics* Anita Orendt

June 19 Slurm Basics* Anita Orendt

June 21 Introduction to Python, Part 1** Brett Milash & Wim Cardoen

June 26 Introduction to Python, Part 2** Brett Milash & Wim Cardoen

June 28 Numpy/Scipy** Brett Milash & Wim Cardoen

July 10 Using Git* Robben Migacz

CHPC Summer 2018 Presentation Schedule

CHPC has developed a series of courses to help users make the most of CHPC resources. During spring and summer semesters 
we present an abbreviated set. There is no cost associated with these training sessions. There is no need to register, with the 
exception of the XSEDE Workshops. Also, CHPC will be moving to using Zoom for remote attendance to the presentations.

https://www.chpc.utah.edu/presentations/
https://www.chpc.utah.edu/presentations/


Archaeological Sites as Endangered Species: Using Next Generation 
Models to Predict and Protect Cultural Properties on the Grand 
Staircase-Escalante National Monument

Facilitation Highlight

by Peter M. Yaworsky, Brian F. Codding, Kenneth B. Vernon, and  Wim R. Cardoen, The University of Utah 
The Objective

As part of a broader Class I project for the Bureau of Land Management (BLM), the University of Utah Archaeological Center 
(UUAC) was contracted to create a statistical model for predicting the likelihood of archaeological sites, also referred to as 
cultural resources, across the Grand Staircase-Escalante National Monument (GSENM). This Cultural Resources Predictive Model 
(GSENM-CRPM) uses a complete sample of all known archaeological sites broken into time period specific components to 
predict unknown sites based on environmental characteristics associated with these sites using a species distribution model 
(following a Maximum Entropy, MaxEnt, approach). The result of this is a set of robust statistical models capable of predicting 
the occurrence of cultural resources throughout the region.

The UUAC director, Dr. Brian Codding and University of Utah Anthropology graduate students Peter Yaworsky and Kenneth B. 
Vernon began developing a MaxEnt model specific to archaeological sites in August 2017. When looking to generate these 
models, the group realized they did not have the computational resources to accomplish the task and they reached out the 
Center for High Performance Computing ( CHPC), with Peter acting as the primary contact. During an initial meeting with Dr. 
Anita Orendt, CHPC’s Research Consulting & Faculty Engagement Coordinator and ACI-REF, Peter discussed the computational 
needs of the project. The memory and CPU of the statistical calculations (using the R statistical programming environment) 
were beyond the available resources on their office computers, and even if they were able to perform the simulations on these 
resources it would take too long and they would not meet the project deadline. However, there were barriers to moving this 
research to CHPC as Peter had no experience using Linux and HPC.

The Solution

At the end of Peter’s initial meeting, Anita introduced Peter to CHPC Scientific Consultant and ACI-REF Dr. Wim Cardoen, who, 
in his current role, takes care of the R statistical package at CHPC in the broad sense -- he teaches an introductory class on R, 
performs the installation of R (core and external packages) on the CHPC clusters, writes the corresponding SLURM scripts, and 
consults with the CHPC user base when they have R-related questions. Peter then met with Wim to gain some familiarity with 
the CHPC clusters, specifically working in a Linux environment and using a batch system to submit his analyses to the cluster 
versus running them directly on his Windows computer.

In a first step, Wim installed eight external R packages, required to process spatial data. Among these packages were rgdal  for 
spatial data processing and rgeos for vector processing, which are R interfaces to  C libraries of gdal (geospatial abstraction layer) 
and geos (Geometry Engine - Open Source), respectively. Wim first installed the C libraries, and then had to address the fact that 
they were installed in non-default locations. Along with the R packages, Wim also installed the MaxEnt package on the clusters.

In addition, Peter shared his R code and data sets with Wim. Wim modified part of Peter’s original code to make it more suited 
to run on CHPC’s HPC clusters. He also tinkered with Peter’s R code to determine the optimal use of the compute nodes. Wim 
found that the use of multiple cores (using the environment variable OMP_NUM_THREADS) did not significantly improve 
the performance of the code. Therefore, he decided to proceed by running multiple serial simulations per node, in order to 
maximize the efficient use of multi-core compute nodes. However, when using one simulation per core, Wim realized that 
the memory needs of each simulation placed an additional constraint on the runs, as each simulation required about 6 GB, a 
quantity greater than the memory per core of most of the CHPC nodes. Therefore the decision of  the number of simulation per 
node was determined by the memory of the node. With this knowledge, Wim created the corresponding Slurm scripts for Peter, 
allowing him to proceed with the validation of the data, the generation of the models, and the use of CHPC resources to create 
the predictive rasters, as described below.

The original data set consisted of 132 geospatial predictor variables, called rasters. The geospatial rasters fell into five categories: 
resource distribution, climate, environmental productivity, landscape and soil attributes. Only 110 of the 132 geospatial rasters 
were used due to the abundance of missing values for 22 rasters.

The initial calculations tested whether the sample areas (areas inventoried for archeological sites) were adequately represented 
by parameters derived from the 110 predictor rasters. Wim assisted Peter in running these preliminary calculations, which were 
finished on CHPC resources within several days.
In the subsequent calculations the MaxEnt method was used to produce and analyze two types/generations of models. The 
MaxEnt method allowed for the determination of the relative weight of the different predictor rasters. In the first generation, 
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37 models were created using all 110 predictor rasters. Each of 
these 37 models had a certain time frame associated with it.   
The second generation of models was a further refinement by 
selecting the most important predictor raster variables and by 
dropping the predictor variables with a strong correlation to 
the selected predictors. In the final stage the five refined models 
were used to create the four predictive raster for different 
time periods, namely for Archaic, Formative, Late Prehistoric, 
and Historic Time Periods; these were then combined, taking 
the average of these four individual time periods to produce 
the General Time Period predictive raster and taking  highest 
probability from each of these time periods, resulting in the 
Combined Time Period predictive raster. (see Figure 1).

Starting April 1, the general allocation awards are for 
time on kingspeak and notchpeak instead of on ember 
and kingspeak.  Ember general nodes will join lonepeak 
and tangent as unallocated resources.  While this change 
will result in a net lowering of the number of core hours 
available for allocation, the improvement in performance 
of the notchpeak nodes versus the ember nodes, will result 
in a gain in computational power. The maximum award 
has been decreased from 250,000 core hours to 200,000 
for regular, and from 30,000 to 20,000 for quick allocations. 

The second change is in the allocation process itself.  
Starting with allocation requests made during the current 
quarter, the quick allocation form will be simplified.  In 
addition, regular allocation requests for 20,000 core hours 
or less will also use the simplified form. The simplified 
form will require only the following information: PI, title, 
abstract, sources of funding, publication based on CHPC 
usage. This new form will be available for use before the 
request for Summer 2018 allocations is made.

In addition, the protected environment HPC resource 
(Redwood PE), which is currently running in an unallocated 
manner, will be moving to an allocation process starting in 
July.  In this case, the allocation process is slightly different, 
in that priority will be given to NIH funded projects.

Figure 1. Final predictive rasters of the region studied.

The black outline represents the boundaries of the GSENM.  
The x- and y-axes are in meters, using the NAD83 UTMs 
zone 12 coordinates. The color scale represents a probability 
finding an archaeological site in a given cell.

Changes to the Allocation Process

The Result

The first training run of MaxEnt resulted in 37 predictive models 
based on the 110 predictor rasters and all 4400 archaeological 
sites. These models allow one to predict where, for example, a 
residential site dating to the Archaic period, or a rock art site 
from the Late Prehistoric period is likely to be found within the 
Monument.  The second training run of MaxEnt resulted in four 
new time period specific predictive models and one general 
time period predictive model. These models differ from the 
preliminary time period models in that they utilize a subset of 
the 110 raster variables that did not covary with one another.
 

The refined models were used to create six predictive rasters or 
maps showing the probability of site occurrence (from 0 to 1) 

at a 5 m2 resolution. They include the four specific time period 
rasters (Archaic, Formative, Late Prehistoric, and Historic), one 
General time period raster, and one Combined time period 
raster. The Combined raster was created by overlaying the 
four time period rasters and keeping the highest cell values. 
Where the General time period raster identifies only locations 
where sites affiliated with specific time periods are likely to 
occur together, the Combined time period raster identifies any 
location where sites affiliated with specific time periods are 
likely to occur together or separately. Thus, the UUAC project 
was capable of addressing the longstanding problem of 
underestimating the potential for archaeological resources 
that accompanied the more promiscuous lumping strategies 
of previous modeling efforts. 

The research, therefore, has both intellectual merit and broader 
impacts. First, it furnishes anthropology and archaeology 
with a new method for evaluating hypotheses regarding 
the evolution of human land-use through time. Second, the 
project provides a stepping stone to future research aimed 
at addressing questions of prehistoric land-use on a regional 
scale. Finally, it equips federal land managers with a powerful 
new tool, allowing them to craft more effective preservation 
strategies on public lands.



New Protected EnvironmentTechnical Highlight

by  Anita Orendt
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As some of you already know, CHPC is nearing completion of 
a refresh of the protected environment (PE).  This refresh was 
made possible due to the award of a NIH Shared Instrumentation 
Grant, Grant number 1S10OD021644-01A1, in April 2017.  The 
award allowed CHPC to deploy a complete refresh of the existing 
PE, and in the process expand the capabilities and increase 
the security relative to the initial CHPC PE deployment. In 
addition, the refreshed PE is configured to allow for expansion 
in a condominium fashion, in both the storage and in the HPC 
components. The different components of the new PE were made 
accessible to users as they were deployed, most during the first 
quarter of 2018.

The refresh of the PE includes:
•   HPC Cluster  •   Archive Storage
•   Home Directory   •   Scratch Directory
•   Project Space   •   Windows Server
•   New firewall  •   VM farm
•   New Security Information & Event Management (SIEM) solution

As required by the award, CHPC has also formed a PE Policy 
& Allocation Committee to oversee the deployment and the 
subsequent use of this resource. Members include Orly Alter, 
Bioengineering/SCI; Chris Butson, Bioengineering/Neurology/SCI; 
Thomas Cheatham, PI (ex-officio); Julio Facelli, BMI; Cynthia Furse, 
ECE/VPR; Bryan Jones, Moran; Bernie LaSalle, BMI; Tim Parnell, HCI; 
Anita Orendt, CHPC (Chair); Aaron Quinlan, Human Genetics.

With the new PE, there are changes in the policies and processes 
for usage of the PE. Below, both a description of the new resource 
and the new policies are given.

HPC:

The new PE HPC cluster is called Redwood.  As with the clusters in 
the general environment, the power and networking infrastructure 
is in place to expand the cluster in a condominium manner.

The initial, general cluster hardware includes 17 compute nodes:

• 4 Intel XeonSP (Skylake) nodes each with 32 cores and 192 
GB RAM (128 total cores)

• 11  Intel Broadwell nodes each with  28 cores and 128 GB 
RAM (308 total cores)

• 2 GPU nodes with 4 x GTX1080Ti GPUs and 32 cores each 
(Intel XeonSP), 192 GB RAM

In addition, there are two general interactive (login) nodes 
(XeonSP, 32 core), and an EDR infiniband interconnect fabric.

Whereas, the HPC usage was run unallocated in the old PE, in the 
new PE there will be an allocation process for time on the general 
compute nodes with priority given to projects with NIH funding. 
The PE Policy & Allocation committee will be the group reviewing 

applications and making award recommendation.  General 
nodes left idle will be available for use in the freecycle mode, 
with preemption.

Along with the general nodes there is the ability to add 
owner nodes, both as compute and interactive nodes.  
There have already been 56 owner compute nodes added 
to redwood.  Owner nodes left idle can be utilized by all PE 
users in the guest mode, again with preemption. 

Storage:

The storage that will house the home directories, project 
spaces, and scratch is named Mammoth. The scratch space, 
/scratch/mammoth/serial, has a capacity of 160 TB, while 
the total initial capacity for home and project spaces is 
another 160 TB.

All users get a 50 GB home directory (/uufs/chpc.utah.edu/
common/PE/UNID). There will be no increases in the quota 
for this space. This is backed up on a nightly incremental, 
weekly full schedule with a 2 week retention window. This 
space should be used for user specific files such as scripts. 
The 50 GB is a soft quota, with 75 GB being the hard limit.  
When a user exceeds 50 GB of usage, as long as they do not 
exceed 75 GB, a 7-day clock is started.  If the user cleans 
up their usage to below 50 GB before the end of this 7-day 
window, their usage will not be interrupted.  Any usage that 
exceeds 75 GB, or staying above 50 GB for longer than 7 
days, will result in the user no longer being able to write to 
their home directory.

Each project will be provisioned, by default, with a 250 GB 
project space (/uufs/chpc.utah.edu/common/PE/project). 
Access to this space is limited to the users working on the 
project.  If the project has an IRB, the users must be listed 
on the IRB. If the project is not governed by an IRB, then the 
PI of the project will need to approve a user before CHPC 
will provide access. For projects that need more than 250 
GB: if the project is NIH funded, the PI can make a request 
for up to 5 TB, with justification of need.  For non-NIH 
funded projects, or for NIH projects needing more than 5 
TB, additional storage can be purchased at a cost of $150/
TB. This space will be grown as needed. While this space will 
initially be backed up, as was the project space in the old 
PE, as this space grows and as CHPC develops a new backup 
strategy, this will change.

Along with mammoth, there is also an archive storage, elm, 
with an initial capacity of 1 PB; NIH funded projects get 1 TB/
project free.  Space on this file system is available for $120/
TB.  Again, this space will be grown as additional capacity 

file:/uufs/chpc.utah.edu/common/PE/UNID
file:/uufs/chpc.utah.edu/common/PE/UNID
file:/uufs/chpc.utah.edu/common/PE/project
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Human Genomics, dbGaP, and the Use of the 
Protected Environment

RMACC HPC Symposium 2018 

The 2018 Rocky Mountain Advanced Computing Consortium 
(RMACC) High Performance Computing (HPC) symposium 
will be held on the University of Colorado Boulder campus 
August 7-9. This symposium features a wide array of panel 
discussions, technical presentations, and tutorial sessions 
on research, education, and best practices in the areas of 
computational science and high performance computing.  

As part of the conference, there is a student track and a 
student poster competition, with the presenters of the 
winning posters being awarded travel to SC18 which will be 
held Dallas, November 11-16.

Watch for registration and poster submission in May!

is needed. CHPC anticipates that this storage will become the 
place for backup of project space data.

VM farm:

The new VM farm is named Prismatic. With the replacement of 
the VM hardware in the PE, VMs will no longer be free, unless 
the project that the VM is supporting is NIH funded. The VM 
pricing model is based on a block sizing increment, with five 
different block sizes available, with the cost per block based on 
the cost of the hardware and the number of blocks available 
to sell. The prices are for the warranty lifetime of the VM 
hardware, which was purchased with a 5-year warranty. CHPC 
will offer to deploy a VM for a trial period of up to 6 months free 
of charge, provided that the VM does not require substantial 
customization. Note that these prices are for internal, research 
needs; if the VM is for an external project the cost is based on 
the total cost of operation, which substantially raises the cost.

VM Description

Blocks RAM (GB) Cores Storage (GB) Price
1 4 2 50 $350

2 8 2 100 $700

4 16 4 200 $1,400

8 32 8 400 $2,800

16 64 8 800 $5,600

Another change is that there are two different storage offerings 
on the VM farm: SSD storage which is not encrypted and self-
encrypting 7200 RPM spinning drives.  Unless encryption is 
needed, the SSD storage will be used.  Additional VM storage 
is available, in 100GB increments, at a cost of $1000/TB for SSD 
storage and $300/TB for encrypted spinning storage.

Windows server:

The replacement for Swasey will be called Narwhal.  While 
Narwhal is not yet available for use, in the new PE there will be 
changes made on access to the windows compute environment.  
Currently, Swasey is a single physical server being used for 
general access to the PE, for typical desktop applications (e.g., 
Word) and services, as well as for computational needs.
 

In the new setup, the different usages will be segregated onto 
different servers, both physical and virtual.  There will be a set 
of gateway servers (“session host boxes”) that provide users 
with access to the PE using remote desktop with DUO two 
factor authentication. Having multiple servers will allow for 
higher availability as they can be removed from service to 
be updated independently.  From these session host servers, 
users with compute intensive needs will then connect to the 
new Narwhal compute server. This server has 24 physical cores, 
512GB of memory, and 1TB of local SSD space, and will have 
installations of the statistical packages currently found on 
Swasey.  It also allows for mounting of the PE home and project 

spaces if needed. By isolating the compute functionality to a 
server without direct login access, the need for applying OS 
updates immediately is mitigated, allowing for longer run 
times between updates.
 

As the configuration of the windows environment is completed 
more information will be shared via the CHPC website and 
announcements to the PE user mailing list.

 In March 2015, the NIH published security best practices for 
controlled access data that was subject to the NIH Genomic 
Data Sharing (GDS) policy.  This included data in the NIH 
database of Genotypes and Phenotypes (dbGaP).   In response 
to this, CHPC published a set of guidelines: https://www.
chpc.utah.edu/documentation/policies/1.6SecurityPolicy.
php#Pol1.6.5 

The CHPC general environment does not meet the security 
best practices for dbGaP without the addition of the use of 
two factor authentication for users working with the restricted 
data and extended access control lists (ACLs) for restricting 
access to the data. Note also that the encryption requirements 
render the Ceph archive storage in the general environment 
unusable for any restricted data.

CHPC requests that all groups determine if their projects 
are governed by this NIH policy, and if so contact CHPC via 
helpdesk@chpc.utah.edu to transition to the use of the PE 
where these security practices are met by default. 

In addition, as with the refresh of the PE, we now have the 
capacity to house all projects dealing with human genomic 
data in this restricted environment, we strongly encourage all 
projects that are working with human genomic data start to 
transition into the use of the PE; again you can contact CHPC via 
helpdesk@chpc.utah.edu to discuss these recommendations.

https://www.chpc.utah.edu/documentation/policies/1.6SecurityPolicy.php#Pol1.6.5 
https://www.chpc.utah.edu/documentation/policies/1.6SecurityPolicy.php#Pol1.6.5 
https://www.chpc.utah.edu/documentation/policies/1.6SecurityPolicy.php#Pol1.6.5 
http://helpdesk@chpc.utah.edu
http://helpdesk@chpc.utah.edu
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University Information Technology
Center for High Performance Computing
155 South 1452 East, Room 405
SALT LAKE CITY, UT 84112-0190

Thank You for Using CHPC Resources! 

Welcome to CHPC News!
If you would like to be added to our mailing list, please 
provide the following information and send via the CHPC 
contact methods listed below:

Please help us continue to provide you with access to 
cutting edge equipment.

ACKNOWLEDGEMENTS
If you use CHPC computer time or staff resources, we request 
that you acknowledge this in technical reports, publications, 
and dissertations. 

Example of what we ask you to include in your 
acknowledgements:

“A grant of computer time from the Center for High Performance 
Computing is gratefully acknowledged.”

If you make use of the CHPC protected environment, please 
also acknowledge the NIH shared instrumentation grant:

“The computational resources used were partially funded by the 
NIH Shared Instrumentation Grant 1S10OD021644-01A1.”

Name: 
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Department 
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(U Campus

 or U.S. Mail)

Electronic responses

Email:  helpdesk@chpc.utah.edu 
 colette.durrant@utah.edu

Fax:  (801)-585-5366

Paper responses

U.S. Mail:      155 South 1452 East, Rm 405
                 Salt Lake City, UT 84112-0190

U Campus Mail:    INSCC 405

Please submit copies or citations of dissertations, reports, pre-prints, and reprints in which the CHPC is acknowledged in one of the following ways: 

http:// helpdesk@chpc.utah.edu
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