
Turning Weather and Climate Research into
Actionable Science

Newsletter

Summer 2022
Turning Weather and Climate Research into Actionable Science
CHPC Metrics
Operation System (OS) Change on Linux Clusters and Servers
Fall 2022 Presentation Schedule
Python Tips #2

climate.usu.edu/service/index.php) integrates numerous
internal and external sources of weather and climate in-
formation into a ‘one stop shop’ website. CHPC resourc-
es have shouldered a great deal of the computational
backend needed to monitor drought conditions, with the
recent implementation of real-time soil moisture map-
ping being a major accomplishment. Each day, station
data is downloaded and quality controlled. Final form
data points are directed to the Utah Climate Center’s
servers, where daily maps of soil moisture conditions are
hosted. Figure 1 shows an example of the color-coded
daily soil moisture observations.

Behind this daily soil moisture map is a process that in-
volves CHPC software that tabulates hourly soil moisture
observations from approximately 225 surface weather
station locations. In addition to daily considerations,
these hourly soil moisture conditions are also passed

Jon Meyer, Utah Climate Center, Department of Plants, Soils, and Climate, Utah State University

The Utah Climate Center, hosted by the College of Ag-
riculture and Applied Sciences at Utah State University,
serves a mission of weather and climate ‘research-to-op-
erations’ (R2O). Within the backdrop of changing cli-
mate, the R2O initiative is meant to help facilitate aca-
demic endeavors that are focused on actionable science
products. R2O is well suited to address the dynamic and
ever-changing suite of climate service needs at the state
and federal level.

The University of Utah’s Center for High Perfor-
mance Computing (CHPC) serves a critical role in
supporting the Utah Climate Center’s R2O mission
initiatives by providing the bedrock of the
computational and system administration
expertise upon which many of the climate
service platforms are built. CHPC offers the
Utah Climate Center reliable and dedicated
computational resources with the benefit of
minimal system downtime over long periods
of time. Such resources with limited down-
time are critical for the automated, real-time
software systems to be able to provide re-
liable and on-time information stakeholders
seek. Compute nodes on the NOTCHPEAK
partition are employed by the Utah Climate
Center to handle the collection of automated
software platforms designed to perform external data in-
gestion and processing as well as for running of compu-
tationally intensive real-time operational forecast mod-
eling.

In the face of the recent extreme drought, the Utah
Climate Center has focused on building a comprehensive
Utah Drought Dashboard to better monitor and assess
drought condition. This dashboard (viewable at https://

Figure 1: Example of a map of daily soil moisture conditions
color coded to visualize each station’s percentage of saturation.
Maps are updated daily at the Utah Climate Center’s drought dash-
board website.

https://climate.usu.edu/service/index.php
https://climate.usu.edu/service/index.php

2 Summer 2022

through a routine that extracts 6-hourly conditions
across the state and performs a statistical interpolation
and blending between modeled soil moisture conditions
to create high-resolution maps covering the region. Fig-
ure 2 illustrates the distribution of surface soil moisture
observations ingested by the Utah Climate Center (left),
with an example of the high-resolution 2-km interpolat-
ed map of soil moisture conditions being overlaid and
blended with soil moisture conditions modeled by the
National Center for Environmental Prediction (NCEP)
North American Mesoscale (NAM) forecast model
(right). The added performance afforded by CHPC al-
lows the Utah Climate Center the capacity to perform
more intricate interpolation and blending methodologies
that yields a superior hybrid of soil moisture. The goal
of these routines is to preserve the direct observations
from point measurements, while accounting for changes
in soil moisture conditions where direct measurements
are unavailable.

In addition to data mining and processing, the Utah
Climate Center also conducts real-time operational fore-
cast modeling. While numerous forecast models are op-
erated by NCEP, Utah’s complex terrain and intricate
climate processes limit a great deal of forecast fidelity
by the national models. CHPC resources allow the Utah
Climate Center’s in-house modeling platforms to more
closely focus on Utah’s highly nuanced weather patterns
through a methodology called dynamic downscaling.
Dynamic downscaling uses forecasted conditions from
a coarse-resolution ‘parent’ forecast model to supply ini-
tial and boundary conditions for a higher resolution fore-
cast domain placed inside the parent domain’s coverage.
With complex terrain, the high resolution is especially
important for Utah and leads to a much improved repre-

sentation of weather and climate patterns.
Currently, the Utah Climate Center operates both a

short range (3.5 day forecast) and a long range (30 day
forecast) modeling platform based on the Weather Re-
search and Forecasting (WRF) model. The short-range
forecast model dynamically downscales the North
American Mesoscale (NAM) model, which provides a
3.5-day forecast 4-times each day using a 12-km do-
main over the majority of North America. The dynamic
downscaling approach allows the Utah Climate Center’s
forecast model to replicate the NAM model’s 4x-daily,
3.5-day forecast, but at a much-improved 2-km resolu-
tion focused on Utah and neighboring states. The high-
er grid resolution greatly improves the mountain-valley
gradients of temperature, wind, and precipitation. Figure
3 highlights the difference the higher resolution makes
when forecasting localized convective thunderstorms
driven by the summer monsoon. The left panel is based
on the NCEP 12-km NAM output, while the right panel
is from the Utah Climate Center’s 2-km forecast domain.
Not only are spatial patterns of precipitation location af-
fected by the downscaling, but so is the forecast intensity
of thunderstorms. The short-range forecast model is also
used to help Utah’s wintertime cloudseeding operations.
Across the state, over 25 mountain cross-sections visual-
izing vertical profiles of temperatures, wind, cloud con-
ditions, and humidity aids in the optimization of cloud
seeding resource deployment.

In addition to the short-range forecast model, the Utah
Climate Center operates a longer-range, sub-seasonal
forecast model. Run twice a day over a 1-month fore-
cast, this model platform dynamically downscales the
Climate Forecast System (CFS) version 2 model with a
western U.S. domain at 12-km, and a nested Utah-specif-

Figure 2: (left) Coverage of soil moisture stations within Utah and (right) an interpolated map of high-resolution soil moisture conditions
demonstrating the blending and overlaying of the observation-based Utah map with the lower-resolution NCEP modeled soil moisture condi-
tions.

3Center for High Performance Computing

Figure 3: Comparison of forecasted monsoonal thunderstorms
as they would appear on a hypothetical weather radar using the
12-km NCEP NAM model (left) and the 2-km Utah Climate Center
model (right).

ic domain at 3-km. By going from CFSv2’s ~56-km grid
resolution to these much-higher resolutions, the Utah
Climate Center is able to extract more reliable guidance
into seasonal climate applications. Such applications are
growing in number as the platform’s utility becomes ap-
parent, but initial applications focus on advanced snow
melt timing and duration forecasts during the spring
months to aid in streamflow and water resource decision
making and summer soil moisture outlooks during the
growing season. Figure 4 shows predicted 1-month soil
moisture changes from the 12-km western U.S. domain.
Areas of drying or wetting give guidance to drought
monitoring and impact assessments while helping agri-
culture improve water use strategy during the growing
season.

While still early in its development, the in-house mod-

Figure 4: Example of a long-range one-month forecast of sur-
face soil moisture changes for the 12-km western U.S. domain.
Values represent a change in percentage of saturation from the ini-
tial model state and indicate regions of drying (brown) or wetting
(green).

eling and data processing afforded to the Utah Climate
Center by the CHPC has yielded early dividends while
showcasing the power of pairing high-performance com-
puting with an R2O initiative. The early testbed success-
es discussed here will no doubt serve as a springboard to
help secure additional funding support to continue future
application development and model evaluation. With-
out the ongoing support of the CHPC, progress in both
academic knowledge and actionable science products
addressing the immediate needs of Utah’s stakeholders
would be far more difficult to accomplish. Lastly, the in-
ter-collegiate HPC collaboration between Utah State and
the University of Utah that has allowed the Utah Climate
Center access to such immense computational resources
should be heralded for its overall return on investment to
the state and its stakeholders.

CHPC Metrics
Anita Orendt, CHPC Scientific Consultant

As part of an ongoing project to track the growth of CHPC resources and usage we are collecting a number of metrics.
The graph to the right shows the growth in number
of nodes and cores in the HPC clusters over the last
seven years, including both the compute and interac-
tive nodes.

Among the noticeable changes in nodes and cores,
we can identify the growth of lonepeak in September
2017 and again in early 2108. We can also identify
the start of notchpeak in January 2018, along with
the subsequent the addition of 32 general nodes, each
64 cores, to notchpeak in January 2020 followed by
the retirement of ember in retired in February 2020.
During December 2020, we see the impact of the re-
tirement of about 3000 cores on ash.

4 Summer 2022

Operation System (OS) Change
on Linux Clusters and Servers
Martin Cuma, CHPC Scientific Consultant

In recent months CHPC updated the operation sys-
tem (OS) on the Linux systems, including the general
environment clusters, to Rocky Linux 8. This was a ma-
jor OS update that happens roughly every 5 years and
as such it came with some notable changes, that every
user of our systems needs to be aware of. We summa-
rize these changes in this article. For further information,
please see the online documentation.

As of this writing only the Redwood protected envi-
ronment cluster and a handful of custom Linux systems
remain on the old CentOS 7 operating system. CHPC is
working on a time table to complete the OS update on
the remaining systems.

Access
The host names and access modes remain the same,

however, we now only support FastX 3. Also, the list of
supported terminals and desktops is different since the
MATE desktop is not available in Rocky Linux 8.

Software
The most notable change is that we have fully de-

ployed the Spack package manager for most software
installations. Since Spack has different names for some
programs and libraries, that we used to have, everyone
needs to use and get used to these new names. In the
table below we list the programs and libraries which
changed names.

New Name Old Name Note
intel-oneapi-com-
pilers

intel Branding name
change

intel-oneapi-mkl mkl Branding name
change

intel-oneapi-mpi impi Branding name
change

nvhpc pgi Manufacturer
acquisition

netcdf-fortran netcdf-f
parallel-netcdf pnetcdf
quantum-espresso qe

Note also that users can use the Spack packages in-
stalled by the CHPC as a base for their own program
installations using Spack. We have described this at our
Spack help webpage.

The base OS compiler is now gcc/8.5.0. Other com-
pilers include intel-oneapi-compilers/2021.4.0 supply-
ing the Intel compilers, and nvhpc/21.5 supplying the
Nvidia, formerly PGI, compilers.

Most packages and libraries retained the same mod-
ule names, and many of the commonly used ones have
been newly built with the newer compilers. From our
experience so far, there is a good chance that a program
built on the old CentOS 7 OS will work, but some do
not. If you encounter an error running a program that has
worked before, please first check if newer version exists
and try the newer version. If there is no newer version,
report this to CHPC help desk.

The network driver support that underlies the parallel
programming support, especially the MPI libraries has
also changed, which means that most old MPIs don’t
work. We have installed recent versions of Intel MPI (in-
tel-oneapi-mpi/2021.1.1), OpenMPI (openmpi/4.1.3)
and MVAPICH2 (mvapich2/3.2.6), which have been
verified to work. Users are highly encouraged to re-build
their MPI programs using these new MPI libraries. Note
that the recent intel-oneapi-mpi/2021.2.0 and higher
have a deadlock problem on the notchpeak AMD nodes,
therefore the 2021.1.1 should be used instead.

Python built natively on CentOS 7 has dependencies
incompatible with Rocky Linux 8, therefore more recent
python/3.10.3 has been built. Also note that the new OS
does not provide the python command as a part of the
system, use python2 or python3, depending on what
Python version you need. Any Python libraries that have
been installed by the user using the older Python ver-
sions will need to be re-installed for use with the new
Python versions. To allow for the use of existing script
that use the python command with the system Python
2 or Python 3 installations, CHPC has created two new
modules. For use of the system Python 2 the module
is python/2.7.18 and for the system Python 3 it is py-
thon/3.6.8. These modules link the python command to
the OS supplied python2, and python3, respectively.

A similar situation exists with the R builds. The R
built natively on Centos 7 no longer runs on the new
OS. We have therefore installed a new version, R/4.1.3.
For R, in addition to this new build, the containerized
R/4.1.2-basic, R/4.1.2-bioconductor, and R/4.1.2-geo-
spatial can still be used. As with Python, any user in-
stalled R libraries using the old R versions will need to
be reinstalled for use with the new R versions.

While we have updated many packages, both before
and after the update, there is a chance that a specific pro-
gram may not work. If that happens, please, contact our
helpdesk, helpdesk@chpc.utah.edu.

https://chpc.utah.edu/documentation/software/rockylinux8-osupdate.php
https://chpc.utah.edu/documentation/software/fastx.php
https://www.chpc.utah.edu/documentation/software/spack.php
mailto:helpdesk%40chpc.utah.edu?subject=

5Center for High Performance Computing

Fall 2022 Presentation Schedule

Date Presentation Title Presenter
Mon, Aug 22, 2022 Overview of CHPC Anita Orendt
Weds, Aug 31, 2022 Module Basics Anita Orendt
Fri, Sept 2, 2022 Slurm and Slurm Batch Scripts Anita Orendt
Weds, Sept 7, 2022 Hands on Introduction to Linux, part

1*
Anita Orendt & Brett Milash

Fri, Sept 9, 2022 Hands on Introduction to Linux, part
2*

Anita Orendt & Brett Milash

Mon, Sept 12, 2022 Hands on Introduction to Linux, part
3*

Brett Milash & Wim Cardoen

Wed, Sept 14, 2022 Hands on Introduction to Linux, part
4*

Wim Cardoen & Brett Milash

Fri, Sept 16, 2022 Hands on Introduction to Open
OnDemand*

Martin Cuma

Mon, Sept 19, 2022 Introduction to Parallel Computing* Martin Cuma
Weds, Sept 21, 2022 Introduction to Programming with

MPI
Martin Cuma

Fri, Sept 23, 2022 Introduction to Programming with
OpenMP

Martin Cuma

Mon, Sept 26, 2022 Hybrid MPI-OpenMP Programming Martin Cuma
Weds, Sept 28, 2022 Hands on Introduction to Python,

part 1*
Brett Milash & Wim Cardoen

Fri, Sept 30, 2022 Hands on Introduction to Python,
part 2*

Brett Milash & Wim Cardoen

Mon, Oct 3, 2022 Hands on Introduction to Python,
part 3*

Brett Milash & Wim Cardoen

Weds, Oct 5, 2022 Numpy, part 1 (Hands on Introduc-
tion to Python part 4)*

Wim Cardoen & Brett Milash

Fri, Oct 7, 2022 Numpy, part 1 (Hands on Introduc-
tion to Python part 5)*

Wim Cardoen & Brett Milash

Oct 10-14, 2022 Fall Break Fall Break
Mon, Oct 17, 2022 National and Regional Compute

Resources
Anita Orendt

Weds, Oct 19, 2022 Open Science Grid (OSG) Wim Cardoen
Fri, Oct 21, 2022 Workflows Using Snakemake* Brett Milash
Mon, Oct 24, 2022 Nextflow* Brett Milash
Weds, Oct 26, 2022 GPU Programming Wim Cardoen
Fri, Oct 28, 2022 Introduction to I/O at CHPC Martin Cuma
Mon, Oct 31, 2022 Introduction to Profiling Martin Cuma
Weds, Nov 2, 2022 Introduction to Debugging Martin Cuma
Fri, Nov 4, 2022 Introduction to Containers* Martin Cuma
Mon, Nov 7, 2022 Overview of the Protected Environ-

ment
Anita Orendt

Presentations are 1-2 pm unless labeled with *, then they are hands on, 1-3 pm. For online schedule, see https://
www.chpc.utah.edu/presentations/fall2022chpcpresentationschedule.php.

https://www.chpc.utah.edu/presentations/Overview.php
https://www.chpc.utah.edu/presentations/IntroModules.php
https://www.chpc.utah.edu/presentations/IntroSlurmAndSlurmBatchScripts.php
https://www.chpc.utah.edu/presentations/IntroLinux3parts.php
https://www.chpc.utah.edu/presentations/IntroLinux3parts.php
https://www.chpc.utah.edu/presentations/IntroLinux3parts.php
https://www.chpc.utah.edu/presentations/IntroLinux3parts.php
https://www.chpc.utah.edu/presentations/IntroLinux3parts.php
https://www.chpc.utah.edu/presentations/IntroLinux3parts.php
https://www.chpc.utah.edu/presentations/OpenOnDemand.php
https://www.chpc.utah.edu/presentations/OpenOnDemand.php
https://www.chpc.utah.edu/presentations/IntroParallel.php
https://www.chpc.utah.edu/presentations/IntroMPI.php
https://www.chpc.utah.edu/presentations/IntroMPI.php
https://www.chpc.utah.edu/presentations/IntroOpenMP.php
https://www.chpc.utah.edu/presentations/IntroOpenMP.php
https://www.chpc.utah.edu/presentations/Hybrid.php
https://www.chpc.utah.edu/presentations/IntroPython.php
https://www.chpc.utah.edu/presentations/IntroPython.php
https://www.chpc.utah.edu/presentations/IntroPython.php
https://www.chpc.utah.edu/presentations/IntroPython.php
https://www.chpc.utah.edu/presentations/IntroPython.php
https://www.chpc.utah.edu/presentations/IntroPython.php
https://www.chpc.utah.edu/presentations/IntroPython.php
https://www.chpc.utah.edu/presentations/IntroPython.php
https://www.chpc.utah.edu/presentations/IntroPython.php
https://www.chpc.utah.edu/presentations/IntroPython.php
https://www.chpc.utah.edu/presentations/XSEDESupportCHPC.php
https://www.chpc.utah.edu/presentations/XSEDESupportCHPC.php
https://www.chpc.utah.edu/presentations/IntroOSG.php
https://www.chpc.utah.edu/presentations/SnakemakeSpring2019.php
https://www.chpc.utah.edu/presentations/nextflow.php
https://www.chpc.utah.edu/presentations/IntroGPU.php
https://www.chpc.utah.edu/presentations/IntroIOCHPC.php
https://www.chpc.utah.edu/presentations/IntroProf.php
https://www.chpc.utah.edu/presentations/IntroDebug.php
https://www.chpc.utah.edu/presentations/Containers.php
https://www.chpc.utah.edu/presentations/ProtectedEnvironmentatCHPC.php
https://www.chpc.utah.edu/presentations/ProtectedEnvironmentatCHPC.php
https://www.chpc.utah.edu/presentations/fall2022chpcpresentationschedule.php
https://www.chpc.utah.edu/presentations/fall2022chpcpresentationschedule.php

6 Summer 2022

Python Tips #2
Wim R.M. Cardoen, CHPC Scientific Consultant

In the following paragraphs we discuss some recent innovations in Python. All code snippets were tested using Py-
thon 3.11.0b3. The examples can be downloaded from https://github.com/wcardoen/python-reflections.

Match-operator: Most programming languages have selection control mechanisms beyond the if, elif, else con-
structs. Its C counterpart is the switch construct.

Traditional if/elif/else statements
def find_capital(country):

 if country == ’France’:
 return ’Paris’
 elif country == ’Netherlands’:
 return ’Amsterdam’
 elif country == ’Belgium’:
 return ’Brussels’
 else:
 return ’SORRY!’
for country in [’Belgium’, ’Poland’]:
 print(f” Country:{country:>15s} -> Capital:{find_capital(country):>10s}
 ”)

The aforementioned code block results in the following output:
 Country: Belgium -> Capital: Brussels
 Country: Poland -> Capital: Sorry!

In Python 3.10, the match construct was introduced.

def find_capital2(country):
match/case construct (Python >= 3.10)
 match country:
 case ’France’:
 return ’Paris’
 case ’Netherlands’:
 return ’Amsterdam’
 case ’Belgium’:
 return ’Brussels’
 case _:
 return ’Sorry!’
for country in [’Belgium’, ’Denmark’]:
 print(f” Country:{country:>15s} -> Capital:{find_capital2(country):>10s
}”)

The aforementioned block results in:
 Country: Belgium -> Capital: Brussels
 Country: Denmark -> Capital: Sorry!

You can combine several patterns using the | (i.e., ∪ operator).

def find_continent(country):
 match country:
 case ’Belgium’|’France’|’Germany’|’Netherlands’:
 return ’Europe’
 case ’China’|’India’|’Japan’:
 return ’Asia’
 case _:
 return ’Sorry!’
for country in [’France’, ’China’, ’USA’]:
 print(f” Country:{country:>15s} -> Continent:{find_continent(country) :>10s}”)

The above code block produces the following output:
 Country: France -> Continent: Europe
 Country: China -> Continent: Asia

https://github.com/wcardoen/python-reflections

7Center for High Performance Computing

 Country: USA -> Continent: Sorry!

Patterns can also be verified by unpacking:

def find_location(point):
 match point:
 case (0,0,0):
 return ”Origin”
 case (x,0,0):
 return ”Pt. on x-axis”
 case (0,y,0):
 return ”Pt. on y-axis”
 case (0,0,z):
 return ”Pt. on z-axis”
 case (x,y,0):
 return ”Pt. in the xy-plane”
 case (x,0,z):
 return ”Pt. in the xz-plane”
 case (0,y,z):
 return ”Pt. in the yz-plane”
 case (x,y,z):
 return ”Reg. pt.”
 case _:
 return ”NOT a 3D-point”
for item in [(3,4,5), [2,0,0], (0,0,0), (0,3,2), (3,4,5,6)]:
 print(f” Pt.:{str(item):>15s} Type:{find_location(item)}”)

This results in:
 Pt.: (3, 4, 5) Type:Reg. pt.
 Pt.: [2, 0, 0] Type:Pt. on x-axis
 Pt.: (0, 0, 0) Type:Origin
 Pt.: (0, 3, 2) Type:Pt. in the yz-plane
 Pt.: (3, 4, 5, 6) Type:NOT a 3D-point

The match pattern construct is an extensive topic. Three PEPS (PEP-622, PEP-634, PEP-636) were written to address
it.

Merging of dictionaries: The merging and update of Python dictionaries has been improved in Python 3.9 by introduc-
ing the | and |= operators. The details are discussed in PEP-0584

capitals1 = {’france’:’paris’, ’germany’:’berlin’}
capitals2 = {’france’:’paris’, ’belgium’:’brussels’}
Merging: Creation of a new dict object
capitals3 = capitals1 | capitals2
print(f” capitals3:\n{capitals3}”)
Update in-place operation
capitals1 |= capitals2
print(f” capitals1:\n{capitals1}”)

This results in:
 capitals3:
 {’france’: ’paris’, ’germany’: ’berlin’, ’belgium’: ’brussels’}
 capitals1:
 {’france’: ’paris’, ’germany’: ’berlin’, ’belgium’: ’brussels’}

Removing the prefixes/suffixes of strings: Python 3.9 introduced some handy methods to remove suffixes and prefixes
(PEP-0616).

city=”Witwatersrand”
STR1, STR2 =”Wit”, “rand”
print(f”String:’{city}’”)
print(f” remove the prefix ’{STR1}’ -> ’{city.removeprefix(STR1)}’”)
print(f” remove the sufffix ’{STR2}’ -> ’{city.removesuffix(STR2)}’”)

https://peps.python.org/pep-0622/
https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/
https://peps.python.org/pep-0584/
https://peps.python.org/pep-0616/

Please acknowledge the use of CHPC Resources

Please submit copies or citations of dissertations, reports, pre-prints, and reprints in which CHPC is acknowledged
by sending to helpdesk@chpc.utah.edu.

The University of Utah
University Information Technology

Center for High Performance Computing
155 South 1452 East, Room 405
SALT LAKE CITY, UT 84112–0190

If you use CHPC computer time or staff resources, we request that you acknowledge this in technical reports, publi-
cations, and dissertations. An example of what we ask you to include in your acknowledgement is:

 “A grant of computer time from the Center for High Performance Computing is gratefully acknowl-
edged.”

If you make use of the CHPC Protected Environment, please also acknowledge the NIH shared instrumentation
grant:
 “The computational resources used were partially funded by the NIH Shared Instrumentation Grant
1S10OD021644-01A1.”

Results in:
String:’Witwatersrand’
 remove the prefix ’Wit’ -> ’watersrand’
 remove the suffix ’rand’ -> ’Witwaters

Math module: The math module was extended with some interesting methods, among them:
– math.isqrt : returns the integer part of the square root
– math.gcd : returns the Greatest Common Divisor
– math.lcm : returns the Least Common Multiple
– math.prod : calculates the products of the elements in a iterable
– math.comb : calculates the number of combinations
– math.perm : calculates the number of permutations
– math.dist : calculates the euclidean distance between two points

import math
print(f” math.isqrt(26) :{math.isqrt(26)}”)
print(f” math.gcd(24,12,36):{math.gcd(24,12,36)}”)
print(f” math.lcm(2,4,6,8) :{math.lcm(2,4,6,8)}”)

print(f” math.prod([2,3,4,5,6)], start=10) :{math.prod ([2,3,4,5,6] , start=10}”)
print(f” math.comb(5,2):{math.comb(5,2)}”)
print(f” math.perm(5,2):{math.perm(5,2)}”)
p = range (1 ,10)
q = range (2 ,11)
print(f” math.dist(p,q):{math.dist(p,q)}”)

Which results in:
 math.isqrt(26):5
 math.gcd(24,12,36):12
 math.lcm(2,4,6,8) :24
 math.prod([2,3,4,5,6],start=10):7200
 math.comb(5,2):10
 math.perm(5,2):20
 math.dist(p,q):3.0

mailto:helpdesk%40chpc.utah.edu?subject=Response%20to%20newsletter

