
Introduction to
Linux Scripting (Part 2)

Wim Cardoen, David Heidorn and Anita Orendt
CHPC User Services

Overview

• Advanced Scripting
• Compiling Code

Getting the exercise files

• For today’s exercises, open a session to one of
the cluster interactives and run the following
commands:

cp ~u0253283/Talks/LinuxScripting2.tar.gz .
tar -zxvf LinuxScripting2.tar.gz
cd LinuxScripting2/

Presenter
Presentation Notes
-five minutes

Commands to string

• The output of a string can be put directly into a
variable with the backtick: `

• The backtick is not the same as a single quote:

` '
• Bash form: VAR=`wc -l $FILENAME`

• Tcsh form: set VAR="`wc -l $FILENAME`"

String replacement

#!/bin/bash
IN=“myfile.in”
#changes myfile.in to myfile.out
OUT=${IN/.in/.out}
./program < $IN > $OUT

#!/bin/tcsh
set IN = “myfile.in”
#changes myfile.in to myfile.out
set OUT=“$IN:gas/.in/.out/”
./program < $IN > $OUT

A neat trick for changing the name of your output file is to use
string replacement to mangle the filename.

• In tcsh the ‘gas’ in “$VAR:gas/search/replace/” means to
search and replace all instances (“global all substrings”); there
are other options (use “man tcsh”).

• In bash, ${VAR/search/replace} is all that is needed.
• You can use 'sed' or 'awk' for more powerful manipulations.

Presenter
Presentation Notes
“global all subtrings” is a rough way of putting it

there are other programs, like sed, awk; you can learn to use them on your own time

Dates and Times

• Date strings are easy to generate in Linux
– “date” command gives the date, but not nicely

formatted for filenames
– date --help will give format options (use +)

• A nice formatted string format (ns resolution):
date +%Y-%m-%d_%k-%M-%S_%N
"2014-09-15_17-27-32_864468693"

• For a really unique string, you can use the following command to get a
more or less unique string (not recommended for cryptographic purposes)

$(cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 32 | head -n 1)

Presenter
Presentation Notes
-this is not a standard notation, it’s really only good for mostly unique files
-this can be unruly, but it can be a life saver when trying to sort files

Exercise 2.1
Modify your previous script so that instead of writing to an output file
with a fixed name, the output filename is derived from the input file
(e.g., ‘file.out” becomes “file.date”). Don’t forget to copy your script in
case you make a mistake!

Command execution to string - VAR=`command` (use the backtick)

Bash replacement – ${VAR/search/replace}
Tcsh replacement – “$VAR:gas/search/replace/”

Dates - date +%Y-%m-%d_%k-%M-%S_%N (or pick your own format)

Presenter
Presentation Notes
-The example input file for this exercise has 17000 lines in it; hard to search through that by hand
-The developers of QE put ! before lines where there is a final energy, which is useful (think about that); we want to look at those lines because that’s what we are interested in
-Five minutes for this exercise

Solution to Exercise 2.1
#!/bin/bash
INPUT=$1
DATE=`date +%Y-%m-%d_%k-%M-%S_%N`
OUT=${INPUT/out/}$DATE
grep ‘\!’ $INPUT > $OUT
wc –l $OUT

#!/bin/tcsh
set INPUT = $1
set DATE = "`date +%Y-%m-%d_%k-%M-%S_%N`"
set OUT = “$INPUT:gas/out//”$DATE
grep ‘\!’ $INPUT > $OUT
wc -l $OUT

Every time you run the script, a new unique output file
should have been generated.

Presenter
Presentation Notes
-five minutes

Conditionals (If statements)
#!/bin/bash
VAR1="name"
VAR2="notname"
if [[$VAR1 == $VAR2]]; then
echo "True"

else
echo "False"

fi
if [[-d $VAR]]; then
echo "Directory!

fi

#!/bin/tcsh
set VAR1="name"
set VAR2="notname"
if ($VAR1 == $VAR2) then
echo "True"

else
echo "False"

endif
if (-d $VAR) then
echo "Directory!"

endif

• The operators ==, !=, &&, ||, <, > and a few others work.
• You can use if statements to test two strings, or test file

properties.

Presenter
Presentation Notes
remember to indent! it helps everyone

Conditionals (File properties)
Test bash tcsh

Is a directory -d -d

If file exists -a,-e -e

Is a regular file (like .txt) -f -f

Readable -r -r

Writeable -w -w

Executable -x -x

Is owned by user -O -o

Is owned by group -G -g

Is a symbolic link -h, -L -l

If the string given is zero length -z -z

If the string is length is non-zero -n -s

-The last two flags are useful for determining if an environment variable exists.
-The rwx flags only apply to the user who is running the test.

Loops (for/foreach statements)
#!/bin/bash
for i in 1 2 3 4 5; do
echo $i

done
for i in *.in; do
touch ${i/.in/.out}

done
for i in `cat files`; do
grep "string" $i >> list

done

#!/bin/tcsh
foreach i (1 2 3 4 5)
echo $i

end
foreach i (*.in)
touch "$i:gas/.in/.out/"

end
foreach i (`cat files`)
grep "string" $i >> list

end

• Loops can be executed in a script --or-- on the command line.
• All loops respond to the wildcard operators *,?,[a-z], and {1,2}
• The output of a command can be used as a for loop input.

Presenter
Presentation Notes
remember to indent!

Exercise 2.2
Run the script called ex2.sh. This will generate a directory "ex2" with 100 directories and
folders with different permissions. Write a script that examines all the directories and files
in "ex2" using conditionals and for loops. For each iteration of the loop:
1. Test if the item is a directory. If it is, delete it.
2. If the file is not a directory, check to see if it is executable.

A. If it is, then change the permissions so the file is not executable.
B. If the file is not executable, change it so that it is executable and rename

it so that it has a ".script" extension.
3. After all the files have been modified, execute all the scripts in the directory.

For loops - Bash : for VAR in *; do ... done
Tcsh : foreach VAR (*) ... end

If statements - Bash : if [[condition]]; then ... elif ... else ... fi
Tcsh : if (condition) then ... else ... else if ... endif

Useful property flags - -x for executable, -d for directory

-You can reset the directory by re-running the script ex2.sh
-Make sure that you do not write your script in the ex2 directory, or it will be deleted!

Solution to Exercise 2.2
#!/bin/bash
for i in ex2/*; do
if [[-d $i]]; then
rm -rf $i

else
if [[-x $i]]; then
chmod u-x $i

else
chmod u+x $i
mv $i $i.script

fi
fi

done
for i in ex2/*.script; do
./$i

done

#!/bin/tcsh
foreach i (ex2/*)
if (-d $i) then
rm -rf $i

else
if (-x $i) then
chmod u-x $i

else
chmod u+x $i
mv $i $i.script

endif
endif

end
foreach i (ex2/*.script)
./$i

end

Basic Arithmetic
#!/bin/bash
#initialization
i=1
#increment
i=$((i++))
#addition, subtraction
i=$((i + 2 - 1))
#multiplication, division
i=$((i * 10 / 3))
#modulus
i=$((i % 10))
#not math, echo returns "i+1"
i=i+1

#!/bin/tcsh
#initialization
@ i = 1
#increment
@ i++
#addition, subtraction
@ i = i + 2 - 1
#multiplication, division
@ i = i * 10 / 3
#modulus
@ i = i % 10
#not math, echo returns "i+1"
set i="i+1"

• Bash uses $(()), whereas tcsh uses @
• Important! This only works for integer math. If you need more,

use python.

Presenter
Presentation Notes
I only consider this useful sometimes, but here it is (no exercises)

Interpreted vs. Compiled code
• Source := collection of human-readable computer instructions

written in a programming language
(e.g. C, C++, Fortran, Python, R, Java,…)

• Executable := binary program that can be directly executed on a
computer

• Interpreted languages: the interpreter parses the source code &
executes it immediately

• Compiled languages: the source code needs to be transformed into
an executable through a chain of compilation & linking

• A few examples of both approaches:
a. interpreted languages: Python, R, Julia, Bash, Tcsh,…
b. compiled languages: C, C++, Fortran, …

Creating an executable (Low level)

• For compiled languages, the creation of an
executable goes through the following steps:
– Preprocessing: the pre-processor takes the source

code (.c,.cc,.f90) and “deals” with special statements
e.g. #define, #ifdef, #include (C/C++ case)

– Compilation: takes the pre-processor output
and transforms it into assembly language (*.s)

– Assembly: converts the assembly code (*.s) into
machine code/object code (*.o)

– Linking: the linker takes the object files (*.o) and
transforms them into a library (*.a, *.so) or an

executable

• Example : simple.c (C source file)
• Pre-processing:

- cpp simple.c –o simple.i or
- gcc –E simple.c –o simple.i

• Compilation:
- gcc –S simple.i [–o simple.s]

can also use gcc –S simple.c [-o simple.s]
• Assembly phase: creation of the machine code

- as simple.s –o simple.o or
- gcc –c simple.c [–o simple.o]
can also use gcc –c simple.s [-o simple.o]

• Linking: creation of the executable
- gcc simple.c [-o simple] or

use ld (the linker as such) -> complicated expression

Regular way (cont.)
• Either in 1 step:

a. gcc –o simple simple.c
• Or in 2 steps:

a. gcc –c simple.c
b. gcc –o simple simple.o

or more generally (C, C++, Fortan):
• 1-step:

a. $COMPILER –o $EXE $SOURCE_FILES.{f90,c,cpp}
• 2-step:

a. $COMPILER –c $SOURCE.{f90,c,cpp}
b. $COMPILER –o $EXE $SOURCE.o

Compilers

• Compilers are system-specific, but, there are
quite a few vendors (CHPC has all three):

• GNU: gcc, g++, gfortran – open source, free
• Intel: icc, icpc, ifort – commercial but free

for academia
• PGI: pgcc, pgCC, pgf90 – commercial

Optimization and debugging

• The compiler can perform optimizations that
improve performance.
– common flags -O3 (GNU), -fast (Intel), -fastsse

(PGI)
– Beware! -O3,etc can sometimes cause problems

(solutions do not calculate properly)
• In order to debug program in debugger, symbolic

information must be included
– flag -g
– The easiest debugging is to just add printf or write

statements (like using echo)

Exercise 2.3
Go to the subdirectory "ex3". There are a few source files in this directory. Compile these programs
using the following steps:

1. Compile cpi_ser.c using gcc. Perform the compilation first in 2 steps i.e.
create first an object file & then an executable.
Perform the same compilation in 1 step.

2. Try the same for pi3_ser.f. Does it work?
3. Create the object file of ctimer.c with gcc. Then link both object file ctimer.o and pi3_ser.o into

an executable using gfortran.
4. Try compiling cpi_ser.c with the optimization flag: –O3

Compare the timings with the result obtained under 1.

1-step: Compilation + linking:
gcc hello.c -o hello.x (C source code)
gfortran hello.f -f hello.x (Fortran source code)

2-step process:
Object compilation: gcc -c hello.c (Creates hello.o)
Linking: gcc hello.o -o hello.x (Links hello.o with sys. libraries into an executable)

Using optimization: gcc -O3 hello.c -o helloFast.x

Solutions to Exercise 2.3
1. Compiling a C program:

1-step:
gcc cpi_ser.c -o cpi_ser.x (Time: ~1.625 s)

2-step:
gcc –c cpi_ser.c
gcc –o cpi_ser.x cpi_ser.o

2. Compiling a Fortran program:
2-step:

gfortran –c pi3_ser.f
gfortran –o pi3_ser.x pi3_ser.o -- Errors (Missing dependencies)

3. Compiling the missing dependency + linking:
gcc –c timer.c # (creates ctimer.o)
gfortran ctimer.o pi3_ser.o –o pi3_ser.x

4. Compiling with –O3:
gcc –O3 cpi_ser.c –o cpi_ser.fast.x
or:
gcc –c –O3 cpi_ser.c
gcc –o cpi_ser.fast.x cpi_ser.o

Compiling serious packages

• Some packages are far more complicated than
one or two source files.
– Many packages use gnu config/make
– Others use cmake (useful for cross-platform)
– Others of less repute

• You will almost certainly encounter a package
like this if you continue in scientific computing
– CHPC can help compile programs (can be hard)

but knowing how to do it yourself is useful.

GNU config and make
• Configure: A scripting utility that checks for certain

libraries and applications, as well as compiler
capablities, and building makefiles.
– Executed by the ./configure script in the package directory.
– You can use ./configure --prefix=<PATH> to decide where

to install the package, otherwise it will install in the same
location as the package source.

• Make: Takes instructions from a makefile (a special
script) to compile source in order to make a program.
– As simple as executing make in a folder with a Makefile (or

specifying the makefile with -f)
– Sometime you need to use make install to finish the

compilation process.

Presenter
Presentation Notes
Show a makefile!

Exercise 2.4
You will download and compile the zlib library in this exercise.
zlib is used by many programs for file compression.

1. Make a directory called “ex4" and cd to it.
2. Download and untar the zlib library with the following :

– wget http://zlib.net/zlib-1.2.8.tar.gz
– tar -zxvf zlib-1.2.8.tar.gz

3. Enter the newly created dir. + configure zlib so that it installs
in the dir. $HOME/myzlib and not the source directory (zlib-
1.2.8).
– ./configure --prefix=$HOME/myzlib
– Compile using make and then make install.

4. Check to see if the library was installed properly in
$HOME/myzlib/lib (the files libz.so, libz.a should exist).

Solutions for Exercise 2.4
1. mkdir ex4
2. cd ex4
3. wget http://zlib.net/zlib-1.2.8.tar.gz # Retrieve the src. code
4. tar –zxvf zlib-1.2.8.tar.gz # Unzip + extract the src. code
5. cd zlib-1.2.8 # Enter the newly created dir.
6. ./configure –prefix=$HOME/myzlib
7. make # Compile + link the code
8. make install # If step 7. was OK => install the library
9. ls –la $HOME/myzlib/lib # You should see libz.a & libz.so

http://zlib.net/zlib-1.2.8.tar.gz

Questions?

Email issues@chpc.utah.edu

	Introduction to �Linux Scripting (Part 2)
	Overview
	Getting the exercise files
	Commands to string
	String replacement
	Dates and Times
	Exercise 2.1
	Solution to Exercise 2.1
	Conditionals (If statements)
	Conditionals (File properties)
	Loops (for/foreach statements)
	Exercise 2.2
	Solution to Exercise 2.2
	Basic Arithmetic
	Interpreted vs. Compiled code
	Creating an executable (Low level)
	Slide Number 17
	Regular way (cont.)
	Compilers
	Optimization and debugging
	Exercise 2.3
	Solutions to Exercise 2.3
	Compiling serious packages
	GNU config and make
	Exercise 2.4
	Solutions for Exercise 2.4
	Questions? ��Email issues@chpc.utah.edu

