TOGETHER WE REACH

CENTER FOR HIGH PERFORMANCE COMPUTING

Introduction to SLURM & SLURM batch scripts

Anita Orendt Assistant Director Research Consulting & Faculty Engagement <u>anita.orendt@utah.edu</u>

6 February 2018

Overview of Talk

- Basic SLURM commands
- SLURM batch directives
- Accounts and Partitions
- SLURM Environment Variables
- SLURM Batch scripts
- Running an Interactive Batch job
- Where to get more Information

Basic SLURM commands

- **sinfo** shows partition/node state
- **sbatch <scriptname>** launches a batch script
- **squeue** shows all jobs in the queue
 - squeue -u <username> shows only your jobs
- scancel <jobid> cancels a job

Notes:

- For **sinfo, squeue** can add **–M all** to see all clusters using given slurm installation (kp, lp, ember, ash)
- Can also use full path
- /uufs/<cluster>/sys/pkg/slurm/std/bin/<command> to look at other clusters, their queue, or submit or cancel jobs

Some Useful Aliases

• Bash to add to .aliases file:

alias si="sinfo -o \"%20P %5D %14F %8z %10m %10d %11I %16f %N\"" alias si2="sinfo -o \"%20P %5D %6t %8z %10m %10d %11I %16f %N\"" alias sq="squeue -o \"%8i %12j %4t %10u %20q %20a %10g %20P %10Q %5D %11I %11L %R\""

• Tcsh to add to .aliases file:

alias si 'sinfo -o "%20P %5D %14F %8z %10m %11I %16f %N"' alias si2 'sinfo -o "%20P %5D %6t %8z %10m %10d %11I %N"' alias sq 'squeue -o "%8i %12j %4t %10u %20q %20a %10g %20P %10Q %5D %11I %11L %R"'

Can add -M all to si and sq also

SLURM Batch Directives

#SBATCH --account=name \leftarrow account to use (or -A) #SBATCH --nodes=2 ← number of nodes (or -N) #SBATCH --ntasks 12 \leftarrow total number of tasks (or -n) #SBATCH --mail-user=name@example.com < email address to use #SBATCH -o slurm-%j.out-%N ← name for stdout; %j is job#, %N node #SBATCH -e slurm-%j.err-%N ← name for stderr; %j is job#, %N node #SBATCH --constraint "C20" ← can use features given for nodes (or -C)

Accounts and Partitions

- You need to specify an account and partition to run jobs
- You can see a list of partitions using the sinfo command
- For general allocation usage the partition is the cluster name
- If no allocation (or out of allocation) use *clustername*-freecycle for partition
- Your account is typically your PI's name (e.g., if your PI is Baggins, use the "baggins" account) – there are a few exceptions!
- Private node accounts and partition have the same name PI last name with cluster abbreviation, e.g., baggins-kp, baggins-em, etc
- Private nodes can be used as a guest using the "owner-guest" account and the *cluster*-guest partition

Query your accounts/partitions

- ~]\$ sacctmgr -p show assoc user=u0028729 format=cluster,account,partition,qos Cluster|Account|Partition|QOS|
- notchpeak|chpc||notchpeak|
- kingspeak|kingspeak-gpu||kingspeak-gpu|
- ember|ember-gpu||ember-gpu|
- ash|smithp-guest||ash-guest,ash-guest-res|
- lonepeak|chpc||lonepeak|
- kingspeak|chpc||kingspeak|
- lonepeak|owner-guest||lonepeak-guest|
- ember|owner-guest||ember-guest|
- kingspeak|owner-guest||kingspeak-guest|
- kingspeak|owner-gpu-guest||kingspeak-gpu-guest|
- Ember|chpc||ember|

Note that partition field is empty – for the most part partition and qos are paired

SLURM Environment Variables

- Depends on SLURM Batch Directives used
- Can get them for a given set of directives by using the env command inside a script (or in a srun session).
- Some useful env variables:
 - \$SLURM_JOBID
 - \$SLURM_SUBMIT_DIR
 - \$SLURM_NNODES
 - \$SLURM_NTASKS

Basic SLURM script flow

- 1. Set up the #SBATCH directives for the scheduler to request resources for job
- 2. Set up the working environment, by loading appropriate modules
- 3. If necessary, add any additional libraries or programs to \$PATH and \$LD_LIBRARY_PATH, or set other environment needs
- 4. Set up temporary/scratch directories if needed
- 5. Switch to the working directory (often group/scratch)
- 6. Run the program
- 7. Copy over any results files needed
- 8. Clean up any temporary files or directories

Basic SLURM script - bash

#!/bin/bash

#SBATCH --time=02:00:00

#SBATCH --nodes=1

#SBATCH -o slurmjob-%j.out-%N

#SBATCH --account=owner-guest

#SBATCH --partition=kingspeak-guest

#Set up whatever package we need to run with

module load somemodule

#set up the temporary directory
SCRDIR=/scratch/general/lustre/\$USER/\$SLURM_JOBID
mkdir -p \$SCRDIR

#Set up the path to the working directory

cp file.input \$SCRDIR/.

cd \$SCRDIR

#Run the program with our input

myprogram < file.input > file.output

cp file.output \$HOME/.

cd \$HOME

rm -rf \$SCRDIR

Basic SLURM script - tcsh

#!/bin/tcsh

#SBATCH --time=02:00:00

#SBATCH --nodes=1

#SBATCH -o slurmjob-%j.out-%N

#SBATCH --account=owner-guest

#SBATCH --partition=kingspeak-guest

#Set up whatever package we need to run with module load somemodule

#set up the scratch directory
set SCRDIR /scratch/local/\$USER/\$SLURM_JOBID
mkdir -P \$SCRDIR

#move input files into scratch directory
cp file.input \$SCRDIR/.
cd \$SCRDIR

#Run the program with our input
myprogram < file.input > file.output
cp file.output \$HOME/.
cd \$HOME
rm -rf \$SCRDIR

Parallel Execution

- If needed, create the node list:
 - srun hostname | sort -u > nodefile.\$SLURM_JOBID
 - srun hostname | sort > nodefile.\$SLURM_JOBID
- MPI installations at CHPC are SLURM aware, so mpirun will work without a machinefile (unless you are manipulating the machinefile in your scripts)
- Alternatively, you can use the srun command instead, but you need to compile with a more recently compiled MPI
- Mileage may vary, and for different MPI distributions, srun or mpirun may be preferred (check our slurm page on the CHPC website for more info or email us)

Running interactive batch jobs

An interactive command is launched through the srun command

srun --time=1:00:00 --nodes=1 --account=chpc

--partition=ember --pty /bin/tcsh -1

- Launching an interactive job automatically forwards environment information, including X11 forwarding
- "--pty" must be set to shell preferred for the session (either /bin/tcsh or /bin/bash
- -1 (lower case "L") at the end required

Slurm for use of GPU Nodes

- Ember 11 GPU nodes
 - Each node with M2090 cards
- Kingspeak 8 GPU nodes
 - 2 nodes each with 4 Tesla K80 cards (8 GPUs)
 - 2 nodes each with 8 GeForce TitanX cards
 - 4 nodes each with 2 Tesla P100 cards (owned by School of Computing)
- Notchpeak coming soon
 - 3 nodes each with 3 Tesla V100 cards
- Use partition and account set to cluster-gpu
- Must get added to account request via <u>helpdesk@chpc.utah.edu</u>
- Use only if you are making use of the GPU for the calculation
- Most codes do not yet make efficient use of multiple GPUs so we have enabled node sharing
- See https://www.chpc.utah.edu/documentation/guides/gpus-accelerators.php

Node Sharing on GPU nodes

- Need to specify number of CPU cores, amount of memory, and number of GPU
- Core hours used based on highest % requested among cores, memory and GPUs

Option	Explanation
#SBATCHgres=gpu:k80:1	request one K80 GPU (others types names are titanx, m2090, p100, v100)
#SBATCHmem=4G	request 4 GB of RAM
#SBATCHmem=0	request all memory of the node; use this if you do not want to share the node as this will give you all the memory
#SBATCHtasks=1	requests 1 core

Strategies for Serial Applications

- <u>https://www.chpc.utah.edu/documentation/software/s</u>
 <u>erial-jobs.php</u>
- When running serial applications (no MPI, no threads) unless memory constraint, you should look to options to bundle jobs together so using all cores on nodes
- There are multiple ways to do so
 - srun --multi-prog
 - submit script
- Also consider OSG as an option

Strategies for Job Arrays

- <u>https://www.chpc.utah.edu/documentation/software/sl</u> <u>urm.php#jobarr</u>
- Useful if you have many similar jobs when each use all cores on a node or multiple nodes to run where only difference is input file
- sbatch --array=1-30%n myscript.sh where n is maximum number of jobs to run at same time
- In script: use \$SLURM_ARRAY_TASK_ID to specify input file:
 - ./myprogram input\$SLURM_ARRAY_TASK_ID.dat

Job Priorities

- <u>https://www.chpc.utah.edu/documentation/software/sl</u> <u>urm.php#priority</u>
- **sprio** give job priority for all jobs
 - sprio j JOBID for a given job
 - sprio -- u UNID for all a given user's jobs
- Combination of three factors added to base priority
 - Time in queue
 - Fairshare
 - Job size

TOGETHER WE REACH

CENTER FOR HIGH PERFORMANCE COMPUTING

Slurm Documentation at CHPC

 <u>https://www.chpc.utah.edu/documentation/software/sl</u> <u>urm.php</u>

Other good documentation sources

- <u>http://slurm.schedmd.com/documentation.html</u>
- <u>http://slurm.schedmd.com/pdfs/summary.pdf</u>
- <u>http://www.schedmd.com/slurmdocs/rosetta.pdf</u>

Getting Help

- CHPC website
 - www.chpc.utah.edu
 - Getting started guide, cluster usage guides, software manual pages, CHPC policies
- Service Now Issue/Incident Tracking System
 - Email: <u>helpdesk@chpc.utah.edu</u>
- Help Desk: 405 INSCC, 581-6440 (9-5 M-F)
- We use <u>chpc-hpc-users@lists.utah.edu</u> for sending messages to users; also have Twitter accounts for announcements --@CHPCOutages & @CHPCUpdates