
Hands-on

Introduction to Git
Robben E. Migacz
July 10, 2018



Agenda

• Introduction to version control
• Overview of concepts and terms
• Tutorial section
• Additional topics
• Time for questions



Introduction



Version control

Version control software is used to keep track of 
changes to files over time.



Everyone can use it!

• Writers
• Instructors
• Managers
• Scientists and engineers

• Digital object identifiers (DOI)



Why use version control?

• Collaborate on projects
• Keep historical versions
• Keep copies on remote servers
• Hold editors accountable for changes



Version control software should not be 
used for large backups!



Available software

• Git
• Subversion
• Mercurial
• GNU RCS
• Commercial offerings

Git is the most common by far.





The Fundamentals



git help command



Git packages

• Linux
• Install with package managers

• macOS
• Included with Xcode tools
• Homebrew

• Windows
• Git Bash



Git is not the same thing as GitHub.



Graphical tools

Graphical software offers much of Git’s functionality 
without the need to learn commands.



Concepts and Terms



The repository

All project files are stored in the repository.

You will need to make or otherwise acquire a 
repository to work with Git.



The graph



The commit



Parent commits



Snapshot storage

Git stores a snapshot of the whole tree on each 
commit—not just the changes between commits—to 
make operations faster.



The tree

The tree is the hierarchy of files. The term refers to 
the project files and their structure.



The blob

Files are stored as “blobs,” or “binary large objects.”



The branch

A branch is a collection of commits that describe a 
particular project state.



Branching and conflicts

What happens if you try to merge (combine) 
conflicting branches?



Using Git



Connect to a Linux server.

Get a recent version of Git.
• module load git
• apt install git
• yum install git

Check that it works with git --version.

Hands-on: Prepare



The repository contains the project information.

• Created in a directory with git init
• Cloned from an existing source with git clone 
source [destination]

See usage on handout.

Repositories



You should always configure Git in a new repository. 
Add --global to change everywhere.

• git config user.name "Your Name"
• git config user.email
"your.name@utah.edu"

• git config core.editor editor
• git config commit.template path
• git config user.signingkey gpg_key

Configuring Git



Create a new repository or clone one from an 
existing source.

Configure your name and email address (at a 
minimum) in the new repository.

Hands-on: Make a repository



You can edit files in any editor.

Text files work best with Git.
• Consider using text formats for writing
• Binary files like images and word processor 

documents will not work with comparison tools

Editing files



Git won't “track” all your changes.
• By design
• git add files to the “index” (“staging area”) 

before commits to identify desired modifications

Staging files





Commits only include content from staged files. 
(Your files must be in the index.)

• git commit
• git commit -m "Message"

Commits



Commits are hashed with SHA-1. A long string is used 
to refer to a particular commit.

The string can be shortened where you need to use 
it; “5203b1d979f05bcd88c28257950f467e1c2396f9” 
is (probably) the same as “5203b.”

Commit identification



Modify files with any editor.

Add your changes to the index.

Commit changes (be sure to add a message). Make 
several commits if you have time!

Hands-on: Commits



View the project history with git log.

View new changes with git diff.
• Add commit identifications to the command
• Without specific commits, this compares the 

current state to the previous commit

Logs and differences



Branches allow you to have multiple versions of your 
project simultaneously.
• List with git branch
• Create with git checkout -b branch
• Switch with git checkout branch

Branches



Create a new branch.

Modify files on the new branch and make a commit.

Hands-on: Branches



• Switch to the branch you would like to merge into
• git merge source_branch

If there are conflicting commits, issues will be 
identified within files. (More on this later.)

Merging branches



Switch to the “master” branch.

Merge the changes from the previous exercise (the 
new branch).

Hands-on: Merging





• Fix files with problems
• Create a new commit

<<<<<<< HEAD
This is an example of the first version of a file.
=======
This is the second version!
>>>>>>> 57a4c537d0cc429794dfed77d02e5a1bfca9d91b

Fixing problems



• Store projects on highly available resources
• Good option for collaborative projects

• The “origin” remote is configured automatically 
when using git clone

• The primary remote is typically called “origin”

• git remote add name url

Remote repositories





Never store sensitive information on a 
remote server unless you are certain it is 

permissible.



Interaction generally consists of uploading and 
downloading newer versions of the project.

• git push remote branch
• git pull remote branch

Interacting with remotes



• Forks are copies of a project owned by another 
user

• Helps manage project permissions
• Protects important content

• Pull or merge requests are used to ask the original 
project owner to include your changes

• Generally done on the remote repository host’s website

Working with other projects



• Similar to merge conflicts
• Generally happen when trying to git push

1. Pull the current version with git pull
2. Resolve issues in files
3. Create a new commit
4. Try to git push again

Conflicts with remotes



gitlab.chpc.utah.edu

• Accessible with University credentials
• Create projects that cannot be accessed publicly
• Not for sensitive information

GitLab at CHPC

https://gitlab.chpc.utah.edu/


Create a new project on a remote host (like GitHub 
or GitLab).

Add the remote to your local repository.

git push your project (use --all to push tags and 
all branches).

Hands-on: Remotes



The stash is used to save the project state without 
creating a commit.
• Helpful if changing state (e.g. testing another user’s 

commits) with unfinished changes
• Returns to a clean working directory

• git stash push
• git stash pop

The stash





• git checkout a previous commit and create a 
new branch at that point

• Works best from an unimportant branch
• Leaves unwanted commits untouched

• git revert to create a new commit that returns 
the project to a different state

• Keeps unwanted commits in history

• git reset to remove commits entirely
• Not a good option for shared repositories
• May be acceptable if all changes are local

Reverting changes



Additional Information



• Frowned upon; others probably won’t like it if you 
modify anything public

• Can be done with most commands by appending 
the -f flag

• Be very careful!

Rewriting history



• CI: Merge to primary branch often, complete 
automated testing

• CD: Similar to CI, but also automates build process

• In theory, release functional software from primary 
branch at any time

• In the case of “continuous deployment,” successful 
modifications go directly to end users

Continuous integration and 
delivery



Selectively ignore files (with pattern matching) from 
most commands.
• Makes operations like git add * safer
• Helps avoid clutter from compiled binaries and 

output files

.gitignore



Attributes of files in repository (improves behavior).
• Identify line endings (Windows, Unix)
• Customize command behavior for certain files
• Mark binary files so they do not appear in diff

output (most recognized automatically)

.gitattributes



• The README file is the source of general 
information on the project

• Often Markdown

• The LICENSE file contains the license of repository 
contents

• The CITATION file provides information on citing the 
project

• Most common in academic projects

Repository information



• Found in .git/hooks
• Examples in *.sample

• Run a script conditionally, such as when you run a 
command

• Interrupts normal workflow

Hooks



• Git repositories inside of Git repositories
• Help simplify project structure
• Reduce redundancy and complexity

Submodules



Questions or comments?



Thank you for your participation!

Robben Migacz
robben.migacz@utah.edu

Center for High Performance Computing
helpdesk@chpc.utah.edu

mailto:robben.migacz@utah.edu
mailto:helpdesk@chpc.utah.edu

	Slide Number 1
	Agenda
	Introduction
	Version control
	Everyone can use it!
	Why use version control?
	Version control software should not be used for large backups!
	Available software
	Slide Number 9
	The Fundamentals
	git help command
	Git packages
	Git is not the same thing as GitHub.
	Graphical tools
	Concepts and Terms
	The repository
	The graph
	The commit
	Parent commits
	Snapshot storage
	The tree
	The blob
	The branch
	Branching and conflicts
	Using Git
		Hands-on: Prepare
	Repositories
	Configuring Git
		Hands-on: Make a repository
	Editing files
	Staging files
	Slide Number 32
	Commits
	Commit identification
		Hands-on: Commits
	Logs and differences
	Branches
		Hands-on: Branches
	Merging branches
		Hands-on: Merging
	Slide Number 41
	Fixing problems
	Remote repositories
	Slide Number 44
	Never store sensitive information on a remote server unless you are certain it is permissible.
	Interacting with remotes
	Working with other projects
	Conflicts with remotes
	GitLab at CHPC
		Hands-on: Remotes
	The stash
	Slide Number 52
	Reverting changes
	Additional Information
	Rewriting history
	Continuous integration and delivery
	.gitignore
	.gitattributes
	Repository information
	Hooks
	Submodules
	Questions or comments?
	Thank you for your participation!��Robben Migacz�robben.migacz@utah.edu��Center for High Performance Computing�helpdesk@chpc.utah.edu

