
Introduction to debugging

Martin Čuma
Center for High Performance
Computing University of Utah

m.cuma@utah.edu

11/3/2016 http://www.chpc.utah.edu Slide 2

Overview
• Program errors
• Simple debugging
• Graphical debugging
• Totalview
• Intel tools
• Please fill survey

https://www.surveymonkey.com/r/7B5FJRM

Presenter
Presentation Notes
1. What is it,…
2. How to compile the code, run TV with it, how to operate
3. Serial program (a buggy one), show basic debugging strategies
4. Parallel program – how to start TV, MPI debugging (hopefully)

11/3/2016 http://www.chpc.utah.edu Slide 3

Program errors

• crashes
– segmentation faults (bad memory access)

• often writes core file – snapshot of memory at
the time of the crash

– wrong I/O (missing files)
– hardware failures

• incorrect results
– reasonable but incorrect results
– NaNs – not a numbers – division by 0, …

11/3/2016 http://www.chpc.utah.edu Slide 4

write/printf

• write variables of interest into the stdout
or file

• simplest but cumbersome
– need to recompile and rerun
– need to browse through potentially large

output

11/3/2016 http://www.chpc.utah.edu Slide 5

Terminal debuggers

• text only, e.g. gdb, idb
• need to remember commands or their

abbreviations
• need to know lines in the code (or have it

opened in other window) to
• useful for quick code checking on

compute nodes and core dump analysis

11/3/2016 http://www.chpc.utah.edu Slide 6

GUI debuggers

• have graphical user interface
• freeware or commercial
• Eclipse CDT - free
• PGI’s pdbg – part of PGI compiler suite
• Intel development tools
• Rogue Wave Totalview - commercial
• Allinea DDT - commercial

11/3/2016 http://www.chpc.utah.edu Slide 7

Totalview in a nutshell

• source and machine level debugger
• command line and graphic interface
• serial and parallel debugging support
• supports remote debugging
• supports memory debugging
• allows stepping back (Replay Engine)
• supports CUDA debugging
• runs on variety of platforms

11/3/2016 http://www.chpc.utah.edu Slide 8

How to use Totalview

1. Compile binary with debugging information
 flag -g

gcc –g test.f –o test

2. Load module and run Totalview
module load totalview

 TV + executable
totalview executable

 TV + core file
totalview executable core_file

Presenter
Presentation Notes
also, there are numerous flags that enable TV customized startup – refer to the user’s manual

11/3/2016 http://www.chpc.utah.edu Slide 9

 run TV and attach the executable
- start TV
- Start a Debugging Session window
- choose an existing program or define a new one

 run TV and attach running program
- start TV
- pick “A running program (attach)”
- choose process ID and executable file name

3. Totalview operation
 left mouse button - select
 right mouse button - menu
 left mouse button double click - dive

How to use Totalview

Presenter
Presentation Notes
no comment

11/3/2016 http://www.chpc.utah.edu Slide 10

Totalview windows

Presenter
Presentation Notes
root – displays what processes are running + access to global menu items
process – most commonly used window – go over it in more detail later
variable – inspection and modification of variables

11/3/2016 http://www.chpc.utah.edu Slide 11

Totalview basic
operations

• Data examination
 view data in the variable windows
 change the values of variables
 modify display of the variables
 visualize data
• Action points
• breakpoints and barriers (static or conditional)
• watchpoints
• evaluation of expressions

11/3/2016 http://www.chpc.utah.edu Slide 12

Multiprocess debugging

• Automatic attachment of child processes
• Create process groups
• Share breakpoints among processes
• Process barrier breakpoints
• Process group single-stepping
• View variables across procs/threads
• Display MPI message queue state

11/3/2016 http://www.chpc.utah.edu Slide 13

Basic operation example

• Load up an existing program
• Totalview windows
• step through the code
• place breakpoints
• examine variables

• Load a core file
• examine the crash point

Presenter
Presentation Notes
have been working on this one lately, that's why I show it.
source holding subroutine calls, includes hold common blocks = global variables – show how the common blocks are displayed

after this – make to show how the things compile, then totalview ….
Run the code till congra, step in, run one CG step, show visualization of ch. d.

11/3/2016 http://www.chpc.utah.edu Slide 14

Process view window

• Stack trace – procedure hierarchy
• Stack frame – variables display
• Source code – code + process

navigation
• Threads list – in case of multithreaded

application
• Action points – list of breakpoints,

barriers,…

Presenter
Presentation Notes
stack trace – can move up and down the routines, TV updates stack frame and source code
stack frame – fct. parameters, local variables and registers
source code – displays line numbers, allows placing of action points – process navigation controls

11/3/2016 http://www.chpc.utah.edu Slide 15

Running the debugger

• Menu Go/Halt/Next/Step/Hold or shortcuts
• Possible actions (thread,process/group):
 go (g/G)
 halt (h/H)
 step (source line) (s/S)
 step (instruction) (i/I)
 next (source line) (n/N)
 next (instruction) (x/X)
 run (to selection) (r/R)
 return (out of function) (o/O)

Presenter
Presentation Notes
tell about these options, and then select one of the first lines and run there, then do several steps (I – to show instruction step – switch to assembler mode), s to step into subroutine, n to bypass it

Set a break point and run the code to congra routine, to get stuff initialized (will take a minute or two).

11/3/2016 http://www.chpc.utah.edu Slide 16

Action points

• Breakpoints and barriers
 toggle location with left mouse (shift for barrier)
 right-click – Properties for options
• Evaluation points
 set conditional breakpoints
 conditionally patch out code
• Watchpoints
 watch for change in a memory location

Presenter
Presentation Notes
show simple breakpoint and run to it, show options menu (right click)
just mention barrier is useful for multi-process – thread stuff
evaluation point – set a conditional breakpoint inside RK iteration loop:
if (tim .gt. 0) then
$stop
endif

then say that watchpoints can me useful to see the memory location change, but they have several limitations
are not in ver. 3.9
on SP, max. 8 bytes and must be aligned
on Linux – max. 4 bytes and must be aligned
on SGI and Tru64 – should be less restrictive, but did not try

11/3/2016 http://www.chpc.utah.edu Slide 17

• Variable view
 dive (right mouse) on any variable
 change data type
 select an array slice, e.g. (3:3,:)
 filter array values, e.g. .ne. 0
• Variable visualization
• menu Visualize – only up to 2D arrays

Data examination

Presenter
Presentation Notes
Get into congra and get the charge density
Dive into one single var (e.g. char), change type
Dive into wfct. array, show whole array, slice, filter
Visualize the chden array – rhoe (and play with Visualize a bit)
Visualize can also animate, it will change every time the program hits evaluation point
Show how one can manipulate graphs in Visualize (rotate with middle mouse, move with ctrl-middle mouse, scale with shift-middle mouse,

11/3/2016 http://www.chpc.utah.edu Slide 18

OpenMP specific
debugging

• TV automatically attaches all threads
• put breakpoint to OpenMP parallel section

to debug threads
• variable lamination - show values from all

threads in one window – does not always
work

• barrier points – shift-left click
• ambiguous action points – select all

Presenter
Presentation Notes
set breakpoint inside of the OMP loop, run to there
lamination – show values from all threads in one window
then step through for some and show how the values are changing.
ambiguous action point – some compilers create multiple outlined routines at a single OMP source line – if plant an action point there, ambiguous action point dialog shows up, and we want to select all to trap all the threads

11/3/2016 http://www.chpc.utah.edu Slide 19

MPI specific debugging

• Process synchronization –
program groups

• Barrier points
• Message queue state

graph and display

11/3/2016 http://www.chpc.utah.edu Slide 20

MemoryScape

• Dynamic memory debugging tool
• display memory status
• paint allocated and deallocated blocks
• find memory leaks
• identify dangling pointers
• enable with Tools > Memory Debugger
> Enable memory debugging checkbox

11/3/2016 http://www.chpc.utah.edu Slide 21

Replay Engine

• Allows to reversely debug the code
• Must be turned on at the start of

debugging session
• Run to the error, then backtrack to the

source of the problem
• Helps to capture race conditions and

other hard to reproduce bugs

11/3/2016 http://www.chpc.utah.edu Slide 22

Accelerator debugging

• Nvidia CUDA or OpenACC on GPU
• Intel Xeon Phi
• Tried OpenACC, CUDA

– New process window opens for the GPU
code only, need to switch to the CPU
process window(s) to see what’s
happening on the CPU(s)

11/3/2016 http://www.chpc.utah.edu Slide 23

Some useful
resources

• Totalview webpage
http://www.roguewave.com/products-services/totalview

• Setting up Totalview
Clusters: module load totalview
Some group desktops: inquire at CHPC

• Documentation
http://www.roguewave.com/help-

support/documentation/totalview
http://www.chpc.utah.edu/software/docs/par_devel.html
http://www.chpc.utah.edu/software/docs/totalview.html
http://www.chpc.utah.edu/short_courses/Totalview

11/3/2016 http://www.chpc.utah.edu Slide 24

Totalview
Student Edition

• Free for students
• Limited to one computer, 4 processes
• To sign up, e-mail m.cuma@utah.edu:

– name
– e-mail
– university ID
– anticipated year of graduation

mailto:mcuma@chpc.utah.edu

11/3/2016 http://www.chpc.utah.edu Slide 25

Code checkers

• compilers check for syntax errors
– some compiler flags help too (-C)

• memory checking tools - many errors
are due to bad memory management
– valgrind – easy to use
– purify – harder to use

11/3/2016 http://www.chpc.utah.edu Slide 26

Intel software development
products

• We have a 2 concurrent user license
• Tools for all stages of development

– Compilers and libraries
– Verification tools
– Profilers

• More info
https://software.intel.com/en-us/intel-parallel-studio-

xe

11/3/2016 http://www.chpc.utah.edu Slide 27

Intel Inspector

• Thread checking
– Data races and deadlocks

• Memory checker
– Like leaks or corruption
– Good alternative to Totalview MemoryScape

• Standalone or GUI integration
• More info
http://software.intel.com/en-us/intel-inspector-xe/

11/3/2016 http://www.chpc.utah.edu Slide 28

Intel Inspector
• Source the environment

module load inspectorxe

• Compile with –tcheck -g
ifort -openmp -tcheck -g trap.f

• Run tcheck
inspxe-gui – graphical user interface
inspxe-cl – command line

• Tutorial
https://software.intel.com/en-us/articles/inspectorxe-

tutorials

11/3/2016 http://www.chpc.utah.edu Slide 29

Intel Trace Analyzer
and Collector

• MPI profiler and correctness checker
• Detects violations of MPI standard and errors in

execution environment
• To use correctness checker

module load intel impi itac
setenv VT_CHECK_TRACING 0
mpirun –check-mpi –n 4 ./myApp

• ITAC documentation
https://software.intel.com/en-us/intel-trace-analyzer-

support/documentation

11/3/2016 http://www.chpc.utah.edu Slide 30

Conclusions

• Terminal debuggers
• Compiler vendor debuggers
• Totalview for graphical debugging
• Code checkers and memory checkers
• InspectorXE for thread and memory debugging
• ITAC MPI checker
• Please fill survey:

https://www.surveymonkey.com/r/7B5FJRM

	Introduction to debugging
	Overview
	Program errors
	write/printf
	Terminal debuggers
	GUI debuggers
	Totalview in a nutshell
	How to use Totalview
	Slide Number 9
	Totalview windows
	Totalview basic� operations
	Multiprocess debugging
	Basic operation example
	Process view window
	Running the debugger
	Action points
	Slide Number 17
	OpenMP specific debugging
	MPI specific debugging
	MemoryScape
	Replay Engine
	Accelerator debugging
	Some useful �resources
	Totalview �Student Edition
	Code checkers
	Intel software development products
	Intel Inspector
	Intel Inspector
	Intel Trace Analyzer and Collector
	Conclusions

