
Introduction to Parallel
Programming

Martin Čuma
Center for High Performance Computing

University of Utah
m.cuma@utah.edu

https://www.surveymonkey.com/r/KHVDC5H

Overview

• Types of parallel computers.
• Parallel programming options.
• How to write parallel applications.
• How to compile.
• How to debug/profile.
• Summary, future expansion.
• Please give us feedback
https://www.surveymonkey.com/r/KHVDC5H

9/27/2016 http://www.chpc.utah.edu Slide 2

https://www.surveymonkey.com/r/KHVDC5H

Parallel architectures

Single processor:
• SISD – single instruction single data.
Multiple processors:
• SIMD - single instruction multiple data.
• MIMD – multiple instruction multiple data.

 Shared Memory
 Distributed Memory

 Current processors combine SIMD and MIMD
 Multi-core CPUs w/ SIMD instructions (AVX, SSE)
 GPUs with many cores and SIMT �

9/27/2016 http://www.chpc.utah.edu Slide 3

Presenter
Presentation Notes
SISD – one instruction queue, one processing unit
SIMD – one queue but more processing at the time – specialized CPUs, often a lot of small (4,7,16) bit processing units
MIMD – full SISD CPUs aligned along in parallel – the choice now – can use cheap comodity CPUs

Shared memory
• All processors have

access to local memory
• Simpler programming
• Concurrent memory

access
• More specialized

hardware
• CHPC :

Linux clusters 12, 16, 20, 24, 28
core nodes
GPU nodes

9/27/2016 http://www.chpc.utah.edu Slide 4

BUS
CPU

CPU

Memory

Memory

Dual quad-core node

BUS

CPU

CPU

Memory

Memory

CPU

CPU

Memory

Memory

Many-core node (e.g. SGI)

Presenter
Presentation Notes
Local memory – either through a bus – but bus gets saturated with more CPUs – adding cache helps decrease traffic on the bus
 - or via a switch – fast switches are very expensive
 = often a compromise, smaller switch on a top of the bus
Simpler programming – all processes share memory – don’t have to worry about data synchronization
Concurrent MA + memory synchronization when have cache – this can slow down execution as processes have to wait if the memory is being accessed by other process.
Inca – bus based
Raptor – distributed memory banks on node boards that include 2 CPUs and memory, but connected via fast bus, max. 128 CPUs

https://www.surveymonkey.com/r/KHVDC5H

Distributed memory

• Process has access only
to its local memory

• Data between processes
must be communicated

• More complex
programming

• Cheap commodity
hardware

• CHPC: Linux clusters

9/27/2016 http://www.chpc.utah.edu Slide 5

BUS
CPU

CPU

Memory

Memory

Node Netw
ork

Node

Node

Node

Node

Node

Node

Node

8 node cluster (64 cores)

Presenter
Presentation Notes
no idea on what’s going on on the other process
Programmer must be aware of this and design the program to send the needed data from one process to another
Advantage – just a simple SISD machine connected by a network – cheap. More expensive alternatives speed up the node network connection – faster switches, different network protocols, …
Linux cluster – the cheapest supercomputer.

Parallel programming
options

Shared Memory
• Threads – POSIX Pthreads, OpenMP (CPU, MIC),

OpenACC, CUDA (GPU)
– Thread – own execution sequence but shares memory space

with the original process
• Message passing – processes

– Process – entity that executes a program – has its own memory
space, execution sequence

Distributed Memory
• Message passing libraries
 Vendor specific – non portable
 General – MPI, PVM, language extensions (Co-array

Fortran, UPC. …)
9/27/2016 http://www.chpc.utah.edu Slide 6

Presenter
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

OpenMP basics
• Compiler directives to parallelize
 Fortran – source code comments
!$omp parallel/!$omp end parallel

 C/C++ - #pragmas
#pragma omp parallel

• Small set of subroutines
• Degree of parallelism specification
 OMP_NUM_THREADS or
omp_set_num_threads(INTEGER n)

9/27/2016 http://www.chpc.utah.edu Slide 7

Presenter
Presentation Notes
OpenMP – not a new language
comp. Directives – specific format for Fortran and C – need a special compiler
Subroutines – small library to query and set no. of nodes, process node number,…

MPI Basics

• Communication library
• Language bindings:
 C/C++ - int MPI_Init(int argv, char*
argc[])

 Fortran - MPI_Init(INTEGER ierr)

• Quite complex (100+ subroutines)
but only small number used frequently

• User defined parallel distribution

9/27/2016 http://www.chpc.utah.edu Slide 8

Presenter
Presentation Notes
In which data are communicated from one process to another – either point-to-point or collective (more procs. involved)
Since it is a library, don’t need special compiler, the mpif90,… commands some user may be familiar with are just scripts that specify locations of the MPI libraries, … and they call standard compilers.
But can write simple program with a handful of subroutines
= can not change number of nodes used by the code on the fly (but can create a sub-communicator that can take only a fraction of the allocated nodes)

MPI vs. OpenMP

• Complex to code
• Slow data

communication
• Ported to many

architectures
• Many tune-up

options for parallel
execution

• Easy to code
• Fast data exchange
• Memory access

(thread safety)
• Limited usability
• Limited user’s

influence on parallel
execution

9/27/2016 http://www.chpc.utah.edu Slide 9

Presenter
Presentation Notes
MPI
be aware of where the message goes and where it’s accepted
Slow in distributed memory, on shared it’s as fast as OpenMP
MPICH – can run almost on any parallel machine
User can specify source and receiver of the message and a way how the message is sent (blocking, nonblocking, buffered,…)
OpenMP
very few directives necessary to parallelize
On shared mem. –
Must be aware that variables can be modified by different processes – shared, private
Only on shared mem machines, although there are efforts to create distributed memory versions
Basically only parallel do or explicit parallel

https://www.surveymonkey.com/r/KHVDC5H

Program example

• saxpy – vector addition:
• simple loop, no cross-dependence, easy to

parallelize
subroutine saxpy_serial(z, a, x, y, n)
integer i, n
real z(n), a, x(n), y(n)

do i=1, n
z(i) = a*x(i) + y(i)

enddo
return

9/27/2016 http://www.chpc.utah.edu Slide 10

yxaz +=

Presenter
Presentation Notes
Just loop through all the vector dimension, calculate the product and store in z(i)

https://www.surveymonkey.com/r/KHVDC5H

OpenMP program
example

subroutine saxpy_parallel_omp(z, a, x, y, n)
integer i, n
real z(n), a, x(n), y(n)

!$omp parallel do
do i=1, n

z(i) = a*x(i) + y(i)
enddo
return

setenv OMP_NUM_THREADS 16

9/27/2016 http://www.chpc.utah.edu Slide 11

Presenter
Presentation Notes
Just one extra directive to parallelize the loop
Automatic load balance (although there are options to modify this)
Set the number of nodes via OMP_NUM_NODES
Won’t say more about OpenMP, but its syntax is relatively simple – less than 10 directives, about the same amount of functions, ca 15 options that control data sharing, thread execution order,…

https://www.surveymonkey.com/r/KHVDC5H

MPI program example

subroutine saxpy_parallel_mpi(z, a, x, y, n)
integer i, n, ierr, my_rank, nodes, i_st, i_end
real z(n), a, x(n), y(n)

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD,my_rank,ierr)
call MPI_Comm_size(MPI_COMM_WORLD,nodes,ierr)
i_st = n/nodes*my_rank+1
i_end = n/nodes*(my_rank+1)

do i=i_st, i_end
z(i) = a*x(i) + y(i)

enddo
call MPI_Finalize(ierr)
return

9/27/2016 http://www.chpc.utah.edu Slide 12

z(i) operation on 4 processes

z(1
… n/4)

z(n/4+1
… 2*n/4)

z(2*n/4+1
… 3*n/4)

z(3*n/4+1
… n)

Presenter
Presentation Notes
must initialize and finalize MPI
The vectors are distributed on the CPUs (or x(i) is full on all CPUs)
Must calculate starting and finishing vector index for each node
Final vector z(i) is distributed on the nodes (would have to send the data the node does not own from the other nodes)

https://www.surveymonkey.com/r/KHVDC5H

MPI program example

9/27/2016 http://www.chpc.utah.edu Slide 13

• Result on the first CPU
include "mpif.h"
integer status(MPI_STATUS_SIZE)
if (my_rank .eq. 0) then

do j = 1, nodes-1
do i= n/nodes*j+1, n/nodes*(j+1)
call MPI_Recv(z(i),1,MPI_REAL,j,0,MPI_COMM_WORLD,

& status,ierr)
enddo

enddo
else
do i=i_st, i_end

call MPI_Send(z(i),1,MPI_REAL,0,0,MPI_COMM_WORLD,ierr)
enddo

endif

Data Count
Sender

Recipient

N1

N2

N3

N4

Presenter
Presentation Notes
Here comes an actual message passing
All the processes apart from no. 0 send their results to process 0
Very inefficient – send one real at the time. Can speed this up by setting count to n/nodes, but then would have to take care of the receiving buffer – will show a better solution on the next slide.
Also, MPI provides various functions to optimize the communication count via so called derived datatypes.
Look at the syntax of the Send/Recv calls, most of the communication subroutines have similar syntax:
Communicated data, their count and type, sender/receiver, tag and communicator. Tag and communicator serve to differentiate between various kinds of messages that can be in transport at given time.

https://www.surveymonkey.com/r/KHVDC5H

MPI program example

• Collective communication
real zi(n)
j = 1
do i=i_st, i_end

zi(j) = a*x(i) + y(i)
j = j +1

enddo
call MPI_Gather(zi,n/nodes,MPI_REAL,z,n/nodes,MPI_REAL,
& 0,MPI_COMM_WORLD,ierr)

• Result on all nodes
call MPI_AllGather(zi,n/nodes,MPI_REAL,z,n/nodes,
& MPI_REAL,MPI_COMM_WORLD,ierr)

9/27/2016 http://www.chpc.utah.edu Slide 14

Send data Receive data

Root process

No root process

zi(i)
z(i)

zi(i)
zi(i)
zi(i) Node 1

Node 2
Node 3
Node 4

Presenter
Presentation Notes
To give a feel of MPI complexity:
Collective communication involves all the nodes at given time – don’t have to split using if statements
Gather – sends data from all processes to root process (here 0)

https://www.surveymonkey.com/r/KHVDC5H

Clusters - login
 First log into one of the clusters

ssh lonepeak.chpc.utah.edu – Ethernet
ssh ember.chpc.utah.edu – Ethernet, InfiniBand
ssh kingspeak.chpc.utah.edu – Ethernet, InfiniBand

 Then submit a job to get compute nodes
srun –N 2 –n 24 –p ember –A chpc –t 1:00:00
--pty=/bin/tcsh -l
sbatch script.slr

 Useful scheduler commands
sbatch – submit a job
scancel – delete a job
squeue – show job queue

9/27/2016 http://www.chpc.utah.edu Slide 15

Presenter
Presentation Notes
Very easy to compile – just add –mp switch.
Man contains info on the environmental variables, can also invoke man compiler (e.g. man f77) and read about the –mp flag
If invoke search for OpenMP on the SGI page, will come up with SGI’s manual containing OpenMP references for all supported languages (f77,f90, C, C++)

https://www.surveymonkey.com/r/KHVDC5H

Security Policies

• No clear text passwords use ssh and scp
• You may not share your account under any

circumstances
• Don’t leave your terminal unattended while

logged into your account
• Do not introduce classified or sensitive work

onto CHPC systems
• Use a good password and protect it

9/27/2016 http://www.chpc.utah.edu Slide 16

https://www.surveymonkey.com/r/KHVDC5H

• Do not try to break passwords, tamper with files
etc.

• Do not distribute or copy privileged data or
software

• Report suspicions to CHPC
(security@chpc.utah.edu)

• Please see
http://www.chpc.utah.edu/docs/policies/security.
html for more details

9/27/2016 http://www.chpc.utah.edu Slide 17

Security Policies

mailto:security@chpc.utah.edu
http://www.chpc.utah.edu/docs/policies/security.html

https://www.surveymonkey.com/r/KHVDC5H

Compilation - OpenMP

 Different switches for different compilers, –openmp,
–fopenmp or –mp
module load intel
module load pgi
module load gcc

e.g. pgf77 –mp source.f –o program.exe
 Nodes with up to 28 cores each
 Further references:

Compilers man page – man ifort
Compilers websites
http://www.intel.com/software/products/compilers
http://gcc.cnu.org
http://www.pgroup.com/doc/

9/27/2016 http://www.chpc.utah.edu Slide 18

Presenter
Presentation Notes
Very easy to compile – just add –mp switch.
Man contains info on the environmental variables, can also invoke man compiler (e.g. man f77) and read about the –mp flag
If invoke search for OpenMP on the SGI page, will come up with SGI’s manual containing OpenMP references for all supported languages (f77,f90, C, C++)

http://www.intel.com/software/products/compilers
http://gcc.cnu.org/
http://www.pgroup.com/doc/

https://www.surveymonkey.com/r/KHVDC5H

Compilation - MPI

• Two common network interfaces
– Ethernet, InfiniBand

• Different MPI implementations
– MPICH - Ethernet, InfiniBand
– OpenMPI – Ethernet, InfiniBand
– MVAPICH2 - InfiniBand
– Intel MPI – commercial, Ethernet, InfiniBand

9/27/2016 http://www.chpc.utah.edu Slide 19

Presenter
Presentation Notes
Different implement. = vendor specific – SGI, IBM + portable MPICH
Portable = on the source level (source written e.g. for Raptor should compile and run correctly on SP, Icebox – unless it uses third party or machine specific library subroutine calls – e.g. if have SP code that uses PESSL library – it won’t run anywhere else, but can get a workaround).
Raptor – SGI distribution seems to be better – test this – 3 runs – SGI MPI, MPICH, OpenMP. Also, MPI on Raptor looks slightly faster than OpenMP

https://www.surveymonkey.com/r/KHVDC5H

• Clusters – MPICH, OpenMPI, MVAPICH2, Intel MPI
/MPI-path/bin/mpixx source.x –o program.exe
xx = cc, cxx, f77, f90; icc, ifort for Intel MPI

 MPI-path = location of the distribution – set by module load
module load mpich2 MPICH Ethernet, InfiniBand
module load openmpi OpenMPI Ethernet, InfiniBand
module load mvapich2 MVAPICH2 InfiniBand
module load impi Intel MPI Ethernet, InfiniBand

= after this simply use mpixx
• Ensure that when running (using mpirun), the same module is

loaded.

9/27/2016 http://www.chpc.utah.edu Slide 20

Compilation - MPI

https://www.surveymonkey.com/r/KHVDC5H

Running a parallel job –
Clusters

• MPICH Interactive batch
srun –N 2 –n 24 –p ember –A chpc –t 1:00:00
--pty=/bin/tcsh -l
… wait for prompt …
module load intel mpich2
mpirun –np $SLURM_NTASKS program.exe

• MPICH Batch
sbatch –N 2 –n 24 –p ember –A chpc –t 1:00:00
script.slr

• OpenMP Batch
srun –N 1 –n 1 –p ember –A chpc –t 1:00:00
--pty=/bin/tcsh -l
setenv OMP_NUM_THREADS 12
program.exe

9/27/2016 http://www.chpc.utah.edu Slide 21

Presenter
Presentation Notes
Interactive batch – use reasonable time limits, mostly used for debugging
Batch – production runs – check the right syntax on SP and IB

https://www.surveymonkey.com/r/KHVDC5H

Compiling and running a
parallel job – desktops

• Use MPICH or OpenMPI, MPICH is my preferred
module load mpich2
mpixx source.x –o program.exe
xx = cc, cxx, f77, f90; icc, ifort for Intel MPI

• MPICH2 running
mpirun –np 4 ./program.exe

• OpenMP running
setenv OMP_NUM_THREADS 4
./program.exe

• See more details/combinations at
https://www.chpc.utah.edu/documentation/software/mpilib
raries.php

9/27/2016 http://www.chpc.utah.edu Slide 22

Presenter
Presentation Notes
Interactive batch – use reasonable time limits, mostly used for debugging
Batch – production runs – check the right syntax on SP and IB

https://www.surveymonkey.com/r/KHVDC5H

Single executable across
desktops and clusters

• MPICH, MVAPICH2 and Intel MPI are cross-compatible using the same
ABI

– Can e.g. compile with MPICH on a desktop, and then run on the cluster using MVAPICH2
and InfiniBand

• Intel and PGI compilers allow to build "unified binary" with optimizations for
different CPU platforms

– But in reality it only works well under Intel compilers
• On a desktop

module load intel mpich2
mpicc –axCORE-AVX2 program.c –o program.exe
mpirun –np 4 ./program.exe

• On a cluster
srun –N 2 –n 24 ...
module load intel mvapich2
mpirun –np $SLURM_NTASKS ./program.exe

• https://www.chpc.utah.edu/documentation/software/single-
executable.php

9/27/2016 http://www.chpc.utah.edu Slide 23

Presenter
Presentation Notes
Interactive batch – use reasonable time limits, mostly used for debugging
Batch – production runs – check the right syntax on SP and IB

https://www.surveymonkey.com/r/KHVDC5H

Debuggers
• Useful for finding bugs in programs
• Several free

 gdb – GNU, text based, limited parallel
 ddd – graphical frontend for gdb

• Commercial that come with compilers
 pgdbg – PGI, graphical, parallel but not intuitive
 pathdb, idb – Pathscale, Intel, text based

• Specialized commercial
 totalview – graphical, parallel, CHPC has a license
 ddt - Distributed Debugging Tool
 Intel Inspector XE – memory and threading error checker

• How to use:
 http://www.chpc.utah.edu/docs/manuals/software/par_

devel.html

9/27/2016 http://www.chpc.utah.edu Slide 24

Presenter
Presentation Notes
None of these is paricularly great (won’t catch many memory bugs, for example), apart from Insure, which is good but only for C/C++
Need to finish the webpage….

https://www.surveymonkey.com/r/KHVDC5H

Debuggers - parallel

• Parallel debugging more complex due to interaction
between processes

• Totalview is the debugger of choice at CHPC
 Expensive but academia get discount
 How to run it:

 compile with –g flag
 automatic attachment to OpenMP threads
 wizard to set up MPI debugging session

 Details:
http://www.chpc.utah.edu/docs/manuals/software/totalview.

html

 Further information
http://www.roguewave.com/products-services/totalview

9/27/2016 http://www.chpc.utah.edu Slide 25

https://www.surveymonkey.com/r/KHVDC5H

Debuggers – parallel

9/27/2016 http://www.chpc.utah.edu Slide 26

Source
code view

Process view

Data
inspection

Presenter
Presentation Notes
On the left side up, the window displays running processes (here 4)
On the right side is the debugger window
On the left side down is the variable inspection window.
To switch between the process debug views, double click the process in the process window, or push the arrow (up, down) in the main window.
Then describe the features on the main window.

https://www.surveymonkey.com/r/KHVDC5H

Profilers

• Measure performance of the code
• Serial profiling

– discover inefficient programming
– computer architecture slowdowns
– compiler optimizations evaluation
– gprof, pgprof, pathopt2, Intel tools

• Parallel profiling
– target is inefficient communication
– Intel Trace Collector and Analyzer, AdvisorXE,

VTune

9/27/2016 http://www.chpc.utah.edu Slide 27

Presenter
Presentation Notes
Speedshop – mostly serial, but has MPI routine time tracing capability
Xprofiler – probably similar to speedshop, now does not run since the MPI is not working fully correctly
Vampir – very good profiler designed specifically for MPI, records time spend in communication thus pointing to where the user should concentrate his effort to speed up the application

https://www.surveymonkey.com/r/KHVDC5H

Profilers - parallel

9/27/2016 http://www.chpc.utah.edu Slide 28

Presenter
Presentation Notes
Top window is the main menu part, through which can be open and customized the windows below
Global timeline shows execution profile of the program’s processes. It can be zoomed to particular region. Displays type of activity and messages direction and duration
Summary chart summarizes what time was spent where
Global activity chart does the same thing for each process
Parallelization shows distribution of the activity aligned with time, which shows what was run in parallel and what not.
All the windows have right click menus that enable to customize the views.
Overall, this profiler is very user friendly and easily customizable.
For this program we see that main part of the job is in the initial MPI_Bcast, which broadcasts initial data from process 0 to the rest. Here is the major area for the improvement.

https://www.surveymonkey.com/r/KHVDC5H

Libraries

• Serial
 BLAS, LAPACK – linear algebra routines
 MKL, ACML – hardware vendor libraries

• Parallel
 ScaLAPACK, PETSc, NAG, FFTW
 MKL – dense and sparse matrices

http://www.chpc.utah.edu/docs/manuals
/software/mat_l.html

9/27/2016 http://www.chpc.utah.edu Slide 29

Presenter
Presentation Notes
Not everything needs to be programmed from the scratch. Most of the vendors and many independent organizations supply libraries that can be used for commonly used tasks.
One of them – numerical math.
Most of the stuff is on Raptor – SGI’s SCSL is parallelized linear algebra library similar to BLAS and LAPACK, PETSc is more for numerical solutions of PDEs, NAG contains many routines from linal, PEDs, Fourier transforms,… Should be callable from both C and Fortran
SP has IBM’s version of SCALAPACK – parallel LAPACK – PESSL
Icebox currently does not have anything installed, but can try for PBLAS, SCALAPACK or PETSc, which are public domain. If you are interested, send us e-mail.

https://www.surveymonkey.com/r/KHVDC5H

Summary

• Shared vs. Distributed memory
• OpenMP
 Limited to 1 cluster node
 Simple parallelization

• MPI
 Clusters
 Must use communication

http://www.chpc.utah.edu/docs/presentations/intro_par

9/27/2016 http://www.chpc.utah.edu Slide 30

Presenter
Presentation Notes
Difference between Sh and Dist M – shared – all processes have access to whole memory on the computer
Dist – local machines – process accesses only local memory – must communicate via network to exchange info
OpenMP – for shared M. (although efforts to put also on dist. m.) Main advantage – simple, but not as flexible
MPI – distributed mem. – processes communicate by passing messages

https://www.surveymonkey.com/r/KHVDC5H

References

• OpenMP
http://www.openmp.org/

Chandra, et. al. - Parallel Programming in OpenMP
Chapman, Jost, van der Pas – Using OpenMP

• MPI
http://www-unix.mcs.anl.gov/mpi/

Pacheco - Parallel Programming with MPI
Gropp, Lusk, Skjellum - Using MPI 1, 2

• MPI and OpenMP
Pacheco – An Introduction to Parallel Programming

9/27/2016 http://www.chpc.utah.edu Slide 31

Presenter
Presentation Notes
Some useful references:
MPI – MPI project main web site – links from here to manuals, tutorials,…
Books – many, but those two are quite good and explanatory
OpenMP – OMP project website
Book – just published – good overview
And our website contains info on the systems, software on CHPC

https://www.surveymonkey.com/r/KHVDC5H

Future Presentations

• Introduction to MPI
• Introduction to OpenMP
• Debugging with Totalview
• Profiling with TAU/Vampir
• Intermediate MPI and MPI-IO
• Mathematical Libraries at the CHPC
Feedback
https://www.surveymonkey.com/r/KHVDC5H

9/27/2016 http://www.chpc.utah.edu Slide 32

Presenter
Presentation Notes
Intro to MPI – initialization, basic message passing routines, few hints on optimization
Intro to OpenMP – loop-based parallelism and going beyond that
Intermediate – different communication protocols, more specialized comm routines (gather, scatter, reduce,…)

	Introduction to Parallel Programming
	Overview
	Parallel architectures
	Shared memory
	Distributed memory
	Parallel programming options
	OpenMP basics
	MPI Basics
	MPI vs. OpenMP
	Program example
	OpenMP program� example
	MPI program example
	MPI program example
	MPI program example
	Clusters - login
	Security Policies
	Slide Number 17
	Compilation - OpenMP
	Compilation - MPI
	Slide Number 20
	Running a parallel job – �Clusters
	Compiling and running a parallel job – desktops
	Single executable across desktops and clusters
	Debuggers
	Debuggers - parallel
	Debuggers – parallel
	Profilers
	Profilers - parallel
	Libraries
	Summary
	References
	Future Presentations

