Introduction to profiling

Martin Čuma
Center for High Performance Computing
University of Utah
m.cuma@utah.edu
Overview

• Profiling basics
• Simple profiling
• Open source profiling tools
• Intel development tools
 – Advisor XE
 – Inspector XE
 – VTune Amplifier XE
 – Trace Analyzer and Collector
Why to profile

• Evaluate performance

• Find the performance bottlenecks
 – inefficient programming
 – memory I/O bottlenecks
 – parallel scaling
Tools categories

- Hardware counters
 - count events from CPU perspective (# of flops, memory loads, etc)
 - usually need Linux kernel module installed
- Statistical profilers (sampling)
 - interrupt program at given intervals to find what routine/line the program is in
- Event based profilers (tracing)
 - collect information on each function call
Simple profiling

- Time program runtime
 - get an idea on time to run and parallel scaling
- Serial profiling
 - discover inefficient programming
 - computer architecture slowdowns
 - compiler optimizations evaluation
 - gprof
Open source tools

• Vendor based
 – AMD CodeAnalyst

• Community based
 – perf
 • hardware counter collection, part of Linux
 – oprofile
 • profiler
 – drawback – harder to analyze the profiling results
HPC OS tools

• HPC Toolkit
 – A few years old, did not find it as straightforward to use

• TAU
 – Lots of features, which makes the learning curve slow

• Scalasca
 – Developed by European consortium, did not try yet
• We have a 2 concurrent users license
• Tools for all stages of development
 – Compilers and libraries
 – Verification tools
 – Profilers
• More info

https://www.chpc.utah.edu/documentation/software/intel-parallelXE.php
Intel tools

- Intel Parallel Studio XE 2016 Cluster Edition
 - Compilers (C/C++, Fortran)
 - Math library (MKL)
 - Threading library (TBB)
 - Thread design and prototype (Advisor)
 - Memory and thread debugging (Inspector)
 - Profiler (VTune Amplifier)
 - MPI library (Intel MPI)
 - MPI analyzer and profiler (ITAC)
Intel Inspector

• Thread checking
 – Data races and deadlocks
• Memory checker
 – Like leaks or corruption
• Standalone or GUI integration
• More info

Intel VTune Amplifier

- Serial and parallel profiler
 - multicore support for OpenMP and OpenCL on CPUs, GPUs and Xeon Phi
- Quick identification of performance bottlenecks
 - various analyses and points of view in the GUI
- GUI and command line use
- More info

• **Source the environment**

 module load vtune

• **Run VTune**

 amplxe-gui – graphical user interface
 amplxe-cl – command line (best to get from the GUI)
 Can be used also for remote profiling (e.g. on Xeon Phi)

• **Tuning guides for specific architectures**

• Vectorization advisor
 – Identify loops that benefit from vectorization, what is blocking efficient vectorization and explore benefit of data reorganization

• Thread design and prototyping
 – Analyze, design, tune and check threading design without disrupting normal development

• More info
• **Source the environment**
 module load advisorxe

• **Run VTune**
 advixe-gui – graphical user interface
 advixe-cl – command line (best to get from the GUI)

• **Create project and choose appropriate modeling**

• **Getting started guide**
Intel Trace Analyzer and Collector

• MPI profiler
 – traces MPI code
 – identifies communication inefficiencies

• Collector collects the data and Analyzer visualizes them

• More info
• Source the environment

```
module load itac
```

• Using Intel compilers, can compile with `-trace`

```
mpiifort -openmp -trace trap.f
```

• Run MPI code

```
mpirun -trace -n 4 ./a.out
```

• Run visualizer

```
traceanalyzer a.out.stf &
```

• CHPC site

```
```
Profilers - parallel