
Introduction to
Linux Scripting
Brett Milash and Wim Cardoen

CHPC User Services

Getting the exercise files

• For today’s exercises open a session to
linuxclass.chpc.utah.edu and run the following
commands:

wget https://home.chpc.utah.edu/~u0424091/LinuxScripting2.tar.gz
tar xvfz LinuxScripting2.tar.gz
cd LinuxScripting2

What is a shell script?
• A script is a series of shell commands stored in a file
• A script can be executed in several ways:

– bash scriptname.sh
– ./scriptname.sh (if the script file executable)
– scriptname.sh (if the script is on your PATH environment

variable)
• commands are separated by:

– new line
– semi colon “;”

• Commands executed sequentially until
– the end of the file has been reached
– an error happens
– the “exit” command is executed

Scenarios for scripting

• Using the batch system at CHPC (discussed in the talk
on Slurm Basics)

• Automating pre- and post- processing of datasets
• Performing lots of menial, soul draining tasks efficiently

and quickly

Exercise 1: Write a first script
Create a file named ex1.sh using nano.
First line always contains ‘#!’ followed by the language interpreter.
Put the following content in a file:

#!/bin/bash
echo " My first script:"
echo " My userid is:"
whoami
echo " I am in the directory:"
pwd
echo "Today's date:"
date
echo " End of my first script."

Make the script executable. Run this command:
chmod u+x ./ex1.sh

Now run your script:
./ex1.sh

Script Arguments
Command line arguments to a script are available in the script as
$1, $2, and so on.
For example, if a script is named “myscript.sh” and the script is
executed with “./myscript.sh value1 value2 value3”:
• the variable $1 has the value “value1”
• the variable $2 has the value “value2”
• the variable $3 has the value “value3”
• $0 contains the name of the script
• $# contains the # arguments

Saving results of a command

• The output of a command can be put directly
into a variable with the backtick: `

• The backtick is not the same as a single quote:
Backtick: ` Single quote: ‘

• For example:
VAR=`wc -l $FILENAME`

• You can also do this:
VAR=$(wc –l $FILENAME)

String replacement

#!/bin/bash
IN=“myfile.in”
#changes myfile.in to myfile.out
OUT=${IN/.in/.out}
./program < $IN > $OUT

A neat trick for changing the name of your output file is to use
string replacement to mangle the filename.

• In bash, ${VAR/search/replace} is all that is
needed.

• You can use the sed, awk, or tr commands for more
powerful manipulations.

Exercise 2.0
Write a script that takes a file name as an argument, searches
that file for exclamation points with grep, puts all the lines with
exclamation points into a new file named “outfile”, and then
counts the number of lines in outfile. Use “histan-qe.out” as
your test file.

Don’t forget #!/bin/bash

Variables - Bash style: VAR="string" (no spaces!)

Arguments - $1 $2 $3 ...

Grep - grep 'string' filename

Counting Lines - wc –l filename

Solution to Exercise 2.0
#!/bin/bash
INPUT=$1
grep '!' $INPUT > outfile
cat outfile | wc -l

The output from your script should have been “34”.

Dates and Times

• Date strings are easy to generate in Linux
– “date” command gives the date, but not nicely

formatted for filenames
– “date –help” will give format options (use +)

• date +’Today is: %D’ “Today is 05/31/18”
• date +%r ”10:51:17 AM”
• date +%Y-%m-%d_%k-%M-%S_%N

"2014-09-15_17-27-32_864468693"

Exercise 2.1
Modify your previous script so that instead of writing to an
output file with a fixed name, the output filename is derived
from the input file (e.g., ‘file.out” becomes “file.todays_date”).
Don’t forget to copy your script in case you make a mistake!

Command execution to string - VAR=`command` (use the
backtick)

Bash replacement – ${VAR/search/replace}

Dates - date +%Y-%m-%d_%k-%M-%S_%N (or pick your own
format)

Solution to Exercise 2.1
#!/bin/bash
INPUT=$1
DATE=`date +%Y-%m-%d_%k-%M-%S_%N`
OUT=${INPUT/out/}$DATE
grep ‘!’ $INPUT > $OUT
wc –l $OUT

Every time you run the script, a new unique output file
should have been generated.

Conditionals (If statements)
#!/bin/bash
VAR1="name"
VAR2="notname"
if ["$VAR1" == "$VAR2"]
then

echo "VAR1 and VAR2 have the same value."
else

echo "VAR1 and VAR2 have different values."
fi
if [-d $VAR1]
then

echo "$VAR1 is a directory!"
else

echo "$VAR1 is not a directory!"
fi

• The operators =, !=, &&, ||, <, > and a few others work.
• The “else” clause is optional.
• You can test variable values and file properties.
• See the manual page with “man test” for all the options.

Conditionals (File properties)
Test bash

Is a directory -d

If file exists -a,-e

Is a regular file (like .txt) -f

Readable -r

Writeable -w

Executable -x

Is owned by user -O

Is owned by group -G

Is a symbolic link -h, -L

If the string given is zero length -z

If the string is length is non-zero -n

-The last two flags are useful for determining if an environment variable exists.
-The rwx flags only apply to the user who is running the test.

Loops (for statements)
#!/bin/bash
for i in 1 2 3 4 5
do

echo $i
done
for i in *.in
do

touch ${i/.in/.out}
done
for i in `cat files`
do

grep "string" $i >> list
done

• Loops can be executed in a script --or-- on the command line.
• All loops respond to the wildcard operators *,?,[a-z], and {1,2}
• The output of a command can be used as a for loop input.
• There are also while and until loops.

Exercise 2.2
Run the script called ex2.sh. This will generate a directory "ex2" with 100 directories and
folders with different permissions. Write a script that examines all the directories and files
in "ex2" using conditionals and for loops. For each iteration of the loop:
1. Test if the item is a directory. If it is, delete it.
2. If the file is not a directory, check to see if it is executable.

A. If it is, then change the permissions so the file is not executable.
B. If the file is not executable, change it so that it is executable and rename

it so that it has a ".script" extension.
3. After all the files have been modified, execute all the scripts in the directory.

For loops : for VAR in *; do ... done

If statements : if [condition]; then ... elif ... else ... fi

Useful property flags - -x for executable, -d for directory

-You can reset the directory by re-running the script ex2.sh
-Make sure that you do not write your script in the ex2 directory, or it will be deleted!

Solution to Exercise 2.2
#!/bin/bash
for i in ex2/*; do
if [[-d $i]]; then
rm -rf $i

else
if [[-x $i]]; then
chmod u-x $i

else
chmod u+x $i
mv $i $i.script

fi
fi

done
for i in ex2/*.script; do
./$i

done

Basic Arithmetic
#!/bin/bash
#initialization
i=1
#increment
i=$((i++))
#addition, subtraction
i=$((i + 2 - 1))
#multiplication, division
i=$((i * 10 / 3))
#modulus
i=$((i % 10))
#not math, echo returns "i+1"
i=i+1

• Bash uses $(()) for arithmetic operations.
• Important! This only works for integer math. If you need more,

use python, R, etc.

Bash “Strict” Mode

• Some bash settings simplify debugging:
set –e # Exit immediately on any error
set –u # Error if referencing undefined variable
set –o pipefail # Error on any pipe command

Example: this code should fail:
pattern=“somestring $some_undefined_variable”
grep $pattern non_existent_file | wc -l

• You can do this all at once:
set –euo pipefail

• See Aaron Maxwell’s blog:
– http://redsymbol.net/articles/unofficial-bash-strict-mode/

• Also helpful is ”bash –x yourscript.sh” or “set –x”: prints
each line before execution

http://redsymbol.net/articles/unofficial-bash-strict-mode/

More advanced scripting techniques

• Locating files with “find”
• Create functions with “function”
• Redirect the standard error with “2>”
• Run commands in background with “&”
• Persistent background tasks using “nohup”
• Persistent login sessions using ”screen”
• Run commands in parallel with “xargs”
• Catch signals with “trap”

Questions?

Email: brett.mail@utah.edu
wim.cardoen@utah.edu

helpdesk@chpc.utah.edu

