
Introduction to MPI

Martin Čuma
Center for High Performance
Computing University of Utah

m.cuma@utah.edu

Overview

• Quick introduction (in case you slept/missed last time).
• MPI concepts, initialization.
• Point-to-point communication.
• Collective communication.
• Grouping data for communication.
• Quick glance at advanced topics.
• Survey

27-Oct-21 http://www.chpc.utah.edu Slide 2

Presenter
Presentation Notes
no comment
how to start writing the MPI code, initialization, environment
PTP comm – involves just 2 processes, sender, receiver, data types, types of communication
involves more processes, different types
to communicate data more efficiently
just give an idea what else is in MPI

Distributed memory
• Process has access only

to its local memory
• Data between processes

must be communicated
• More complex

programming
• Cheap commodity

hardware
• CHPC: Linux clusters

27-Oct-21 http://www.chpc.utah.edu Slide 3

BUS
CPU

CPU

Memory

Memory

Node Netw
ork

Node

Node

Node

Node

Node

Node

Node

Presenter
Presentation Notes
no idea on what’s going on on the other process
Programmer must be aware of this and design the program to send the needed data from one process to another
Advantage – just a simple SISD machine connected by a network – cheap. More expensive alternatives speed up the node network connection – faster switches, different network protocols, …
Linux cluster – the cheapest supercomputer. SP – more specialized

MPI Basics
• Standardized message-passing library

 uniform API
 guaranteed behavior
 source code portability

• Complex set of operations
 various point-to-point communication
 collective communication
 process groups
 processor topologies
 one sided communication (RMA)
 parallel I/O

27-Oct-21 http://www.chpc.utah.edu Slide 4

Presenter
Presentation Notes
standard – will run on almost anything, wide variety of software that uses it is available
Uapi = function calls, variables have similar syntax
GB – will perform that particular operation
Port. – will compile on different platforms
OPERATIONS
…

Example 1
program hello
integer i, n, ierr, my_rank, nodes
include "mpif.h"

call MPI_Init(ierr)
call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)
call MPI_Comm_rank(MPI_COMM_WORLD,my_rank,ierr)
if (my_rank .eq. 0) then

do i=1,nproc-1
call MPI_Recv(n,1,MPI_INTEGER,i,0,MPI_COMM_WORLD,

& status,ierr)
print*,’Hello from process’,n

enddo
else

call MPI_Send(my_rank,1,MPI_INTEGER,0,0,MPI_COMM_WORLD,ierr)
endif
call MPI_Finalize(ierr)
return

27-Oct-21 http://www.chpc.utah.edu Slide 5

Presenter
Presentation Notes
Very simple example, process 0 receives and processes 1-n send their rank, process 0 prints it.
What this shows:
should use include file which contains MPI specific info that the code may use
initialize MPI – at the very beginning
find process rank and no. of processes
do whatever (here simple PTP comm.)
finalize MPI

Program output
notchpeak1:~>%module load mpich
notchpeak1:~>%mpif77 ex1.f -o ex1
notchpeak1:~>%salloc –n 4 –N 1 –A notchpeak-shared-

short –p notchpeak-shared-short –t 1:00:00
notch081:~%>mpirun -np $SLURM_NTASKS ex1

Hello from process 1
Hello from process 2
Hello from process 3

27-Oct-21 http://www.chpc.utah.edu Slide 6

Presenter
Presentation Notes
first line – compilation line
Next line – command, use –prefix (specific for SGI, no equivalent on MPICH, -labelio on SP) to indentify the process that is doing the write-out
Here, all the other procs. Send a message to proc 0 which then does the output.

MPI header files

• must be included in subroutines and
functions that use MPI calls

• provide required declarations and definitions
• Fortran – mpif.h

 declarations of MPI-defined datatypes
 error codes
• C – mpi.h

 also function prototypes

27-Oct-21 http://www.chpc.utah.edu Slide 7

Presenter
Presentation Notes
no comment

Basic MPI functions

27-Oct-21 http://www.chpc.utah.edu Slide 8

• Initializing MPI:
 MPI_Init(ierr)

 int MPI_Init(int *argc, char **argv)

• Terminating MPI
 MPI_Finalize(ierr)

 int MPI_Finalize()

• Determine no. of processes
 MPI_Comm_Size(comm, size, ierr)

 int MPI_Comm_Size(MPI_comm comm, int* size)

• Determine rank of the process
 MPI_Comm_Rank(comm, rank, ierr)

 int MPI_Comm_Rank(MPI_comm comm, int* rank)

Presenter
Presentation Notes
Init – in C takes the command line arguments, Fortran does not allow for this
also, Fortran returns error code as argument, C as function return value, error if nonzero
Finalize – no comment
No. of processes – communicator – defines group of processes that take place in the MPI communication. MPI_COMM_WORLD gets created in MPI_Init and encompasses all the processes in the MPI run. User can create his own process groups and communicators, but that is beyond scope of this talk, size = no. of procs.
Rank - same

Basic point-to-point
communication

• Sending data
 MPI_Send(buf, count, datatype, dest, tag,

comm, ierr)
 int MPI_Send(void *buf, int count, MPI_Datatype,

int dest, int tag, MPI_comm comm)
call MPI_Send(my_rank,1,MPI_INTEGER,0,0,MPI_COMM_WORLD,ierr)

• Receiving data
 MPI_Recv(buf, count, datatype, source, tag,

comm, status, ierr)
 int MPI_Recv(void *buf, int count, MPI_Datatype,

int source, int tag,
MPI_comm comm, MPI_Status status)

call MPI_Recv(n,1,MPI_INTEGER,i,0,MPI_COMM_WORLD,status,ierr)

27-Oct-21 http://www.chpc.utah.edu Slide 9

Presenter
Presentation Notes
Send – data to be sent, their amount (1 if just one, more if it is array), type of the data (MPI_INT,…), destination node, tag to differentiate messages, communicator
Receive – data to be received, their amount, data type, source = from which node the message comes, tag, communicator

Message send/recv

• Data (buffer, count)
• Sender / Recipient
• Message envelope
 data type – see next two slides
 tag – integer to differentiate messages
 communicator – group of processes that take

place in the communication
default group communicator –
MPI_COMM_WORLD

27-Oct-21 http://www.chpc.utah.edu Slide 10

MPI_COMM_WORLD

Group 1

COMM_1

Group 2

COMM_2

Task 0
Msg 1

Task 0
Msg 2

Task 1
Msg 1

Task 1
Msg 2

Tag 0

Tag 1

Presenter
Presentation Notes
Tag – hypothetical situation, if we sent 2 messages at the same time, same sender and recipient, can use TAG get the right reception.
Message envelope – contains supplemental info on the message that is sent/received in order to differentiate it from other messages that may be pending at the same time.
… and MPI_COMM_WORLD is a default communicator created by MPI_Init that encompasses all the processes that started MPI
A more advanced MPI code may divide processes into groups that will perform different tasks, this can be done by creating new communicators, only processes that have the same group communicator will then communicate with each other

Predefined data
structures

27-Oct-21 http://www.chpc.utah.edu Slide 11

MPI Datatype Fortran Datatype

MPI_BYTE

MPI_CHARACTER CHARACTER

MPI_COMPLEX COMPLEX

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_REAL REAL

MPI_INTEGER INTEGER

MPI_LOGICAL LOGICAL

MPI_PACKED

Presenter
Presentation Notes
Standard Fortran types + two other, BYTE = byte and PACKED = created with MPI_Pack, more detail later

27-Oct-21 http://www.chpc.utah.edu Slide 12

MPI Datatype C Datatype

MPI_BYTE

MPI_CHAR char

MPI_DOUBLE double

MPI_FLOAT float

MPI_INT int

MPI_LONG long

… …

MPI_PACKED

Predefined data
structures

Presenter
Presentation Notes
Same thing as Fortran, BYTE and PACKED the only ones different from standard C types
Keep in mind that users can create their own MPI types – derived data types, about which I will talk a bit at the end of the talk

Non-blocking
communication

• Initiates operation and returns
 overlap communication with computation
 receive requires 2 function calls – initiate the communication,

and finish it
 prepend function name with I and use request handle at the

end of message
call MPI_Irecv(n,1,MPI_INTEGER,i,0,MPI_COMM_WORLD,status,req,ierr)

 usually completed at the point when the communicated data
are to be used

 consume system resources, which must be released
(MPI_Wait, MPI_Test)
call MPI_Wait(req,status, ierr)

•27-Oct-21 http://www.chpc.utah.edu Slide 13

Presenter
Presentation Notes
All the PTP we discussed so far was blocking – code does not return to the execution until the communication is over.
Non-blocking …… achieved by posting a request for communication by NBL versions of send, receive = requires 2 function calls, to start the communication and to complete it.
Initiation – like send/recv, but one more variable, handle to the communication request.
Completion via MPI_Wait, can use MPI_Test to find if this request has been performed
= the requests take system resources
Also note that it is legal to match blocking and nbl. operations – e.g. MPI_Isend can be received by MPI_Recv

Example 2
numerical integration

27-Oct-21 http://www.chpc.utah.edu Slide 14

[]

[] []∑

∑∫
−

=

=
−

++

=+≈

1

1
0

1
1

)()()(
2
1

)()(
2
1)(

n

i
in

n

i
ii

b

a

xfhxfxfh

xfxfhxf

Presenter
Presentation Notes
trapezoidal rule – approximate integral by area underneath the function, the area can be obtained by summing subareas that are formed by trapezoids, which upper side approximates the function curve (picture)
The formula can be further simplified for faster execution
It is easily parallelized, each node calculates certain interval on the function

Program core

1. Initialize MPI
2. Get interval and no. of trapezoids
3. Broadcast input to all processes
4. Each process calculates its interval
5. Collect the results from all the processes

• New concepts:
 collective communication – involves more processes
 explicit work distribution
 derived data types – more efficient data transfer

27-Oct-21 http://www.chpc.utah.edu Slide 15

Presenter
Presentation Notes
So the list of procedures that we need to do in the program:
1 and get the node information
2 e.g. as user input on one node
3. then must send the input info to the rest of nodes
4. the actual calculation
5. collect the result

There are 2 new MPI concepts that can be utilized by using this example
DDT – often it is more efficient to do communication collectively than PTP
enables to transfer heterogeneous data in one message, thus reducing overhead of message creation and initialization.

Program core - code

#include <stdio.h>
#include "mpi.h"
int main (int argc, char* argv[]){
int p, my_rank, n , i , local_n;
float a, b, h, x, integ, local_a, local_b, total;
MPI_Datatype mesg_ptr;
float f(float x);
void Build_der_data_t(float *a,float *b,int *n,MPI_Datatype

*mesg_ptr);

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD,&p);
if (my_rank == 0) {

printf(“Input integ. interval, no. of trap:\n");
scanf("%f %f %d",&a,&b,&n);}

Build_der_data_t(&a,&b,&n, &mesg_ptr);
MPI_Bcast(&a,1,mesg_ptr,0,MPI_COMM_WORLD);

27-Oct-21 http://www.chpc.utah.edu Slide 16

1.
2.

3.

Presenter
Presentation Notes
This example is in C, for fun.
First 2 lines – includes (IO and MPI)
then variable declarations, MPI_Datatype declares the new type that is used to do more efficient communication
two functions that are used – the fct we want to get integral of, and function that builds derived data type (later)
The numbers then correspond to sections on the previous slide, that is …

h = (b-a)/n; local_n = n/p;
local_a = a + my_rank*h*local_n;
local_b = local_a + h*local_n;

integ = (f(local_a)+f(local_b))/2.;
x = local_a;
for (i=1;i<local_n;i++){

x = x+h;
integ = integ+ f(x);}

integ = integ*h;
printf("Trapezoids n = %d, local integral from ",local_n);
printf("%f to %f is %f\n",local_a,local_b,integ);
total = 0.;
MPI_Reduce(&integ,&total,1,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD);
if (my_rank == 0)

printf("Total integral = %f\n",total);
MPI_Finalize();
return 0;}

27-Oct-21 http://www.chpc.utah.edu Slide 17

4.

5.

Program core - code

Presenter
Presentation Notes
in 4., each node calculates the interval on which it will do the integration, and then calculate the local integral itself
in 5. reduction – another collective operation, adds values of integ from all the nodes into total value

Program output
notch081:~>% mpicc trapp.c -o trapp
notch081:~>% mpirun -np 4 ./trapp
Input integ. interval, no. of trap:
0 10 100
Trapezoids n = 25, local integral from 0.000000 to

2.500000 is 5.212501
Total integral = 333.350098
Trapezoids n = 25, local integral from 2.500000 to

5.000000 is 36.462475
Trapezoids n = 25, local integral from 5.000000 to

7.500000 is 98.962471
Trapezoids n = 25, local integral from 7.500000 to

10.000000 is 192.712646

27-Oct-21 http://www.chpc.utah.edu Slide 18

Presenter
Presentation Notes
A bit more compilcated output here
First line – compilation
Second – submit the command. Then we input the integ. Boundaries (0-10) and how many trapezoids (100)
Then each process reports its interval and the local integral and process 0 collects the total integral and reports it
Note that the output is not totally ordered, which can happen due to possible different speeds/loads on the nodes.

Collective
communication

• Broadcast – from one node to the rest
 MPI_Bcast(buf, count, datatype, root,

comm, ierr)
 int MPI_Bcast(void *buf, int count, MPI_Datatype

datatype, int root, MPI_comm comm)

On root, buf is data to be broadcast, on other nodes it’s data to be
received

• Reduction – collect data from all nodes
 MPI_Reduce(sndbuf, rcvbuf, count, datatype, op, root,

comm, ierr)
 int MPI_Reduce(void *sndbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op,
int root, MPI_comm comm)

MPI_Reduce(&integ,&total,1,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD);

Supported operations, e.g. MPI_MAX, MPI_MIN, MPI_SUM,…
Result stored in rcvbuf only on processor with rank root.

27-Oct-21 http://www.chpc.utah.edu Slide 19

Presenter
Presentation Notes
Bcast – data to be bcasted = before the bcast, only buf in root is defined, after all the other nodes have data in buf,
amount of data, data type, from where it is bcasted, communicator

Reduction – collection using certain operation
- data that are collected (on each node), variable to store the data in (on root), their amount, type, root (where the result is written), communicator

More collective
communication

• Communication operations that involve more than one
process

 broadcast from one process to all the others in the group
 reduction collect data from all the processes in certain manner (sum,

max,…)
 barrier synchronization for all processes of the group
 gather from all group processes to one process
 scatter distribute data from one process to all the others
 all-to-all gather/scatter/reduce across the group

• NOTE: There is no implicit barrier before collective
communication operations, but there is a barrier after

27-Oct-21 http://www.chpc.utah.edu Slide 20

Presenter
Presentation Notes
and they are in the same group (defined by the same communicator). As a reminder, from MPI_Init, we have communicator MPI_COMM_WORLD, which encompasses all the nodes in the application, but user is free to create subgroups with new communicators – in that case the collective communication will proceed only in the nodes that are included in this subgroup.
Note = there is no guarantee that all the processes will perform the collective op. at the same time = the faster ones will wait for the slow ones, but in the communication part of the routine

Derived data types
• Used to group data for communication
• Built from basic MPI data types
• Must specify:
 number of data variables in the derived type and their length (1,1,1)
 type list of these variables (MPI_DOUBLE, MPI_DOUBLE,

MPI_INT)
 displacement of each data variable in bytes from the beginning of

the message (0,24,56)

27-Oct-21 http://www.chpc.utah.edu Slide 21

a b nsome data some data
MPI_DOUBLE MPI_DOUBLE MPI_INT

0 8 24 32 56

Presenter
Presentation Notes
One way to group data for communication – which is more efficient than send each variable one at the time.
specify:
no of variables of that particular MPI type at that point
list of the MPI types in the DDT
displacement of that variable from the first one (in the real memory)
Imagine variables a,b and n are stored in the memory in the fashion as on the picture = a has 8 bytes (variable of type double), then there are some other data, then b at position 24B from a, then again some data and then n at 56B from a. The memory displacement table then will be (0,24,56)
NOTE: this does not allocate new memory for the DDT, merely specifies start memory location of the first member and displacements of the others from the first.
As such, the communication routines will place all the variables in the derived data types at the correct location on the recipient automatically.

void Build_der_data_t(float *a,float *b,
int *n,MPI_Datatype *mesg_ptr){

int blk_len[3] ={1,1,1};
MPI_Aint displ[3], start_addr, addr;
MPI_Datatype typel[3]={MPI_FLOAT,MPI_FLOAT,MPI_INT};

displ[0] = 0;
MPI_Get_address(a,&start_addr);
MPI_Get_address(b,&addr);
displ[1] = addr - start_addr;
MPI_Get_address(n,&addr);
displ[2] = addr - start_addr;

MPI_Type_create_struct(3,blk_len,displ,typel,mesg_ptr);
MPI_Type_commit(mesg_ptr);
}

27-Oct-21 http://www.chpc.utah.edu Slide 22

Derived data types

Presenter
Presentation Notes
MPI_Aint – MPI datatype that specifies memory-related variables (by 4 byte integer) – used for portability
MPI_Address calculates memory displacement of the additional variables from the first one in DDT
then call MPI_Type_Struct to create the type
and MPI_Type_Commit to make it available (system may make changes to internal structure of DDT to improve communication performance)
Maybe something about type signatures – for send/recv, no of types on sender must be <= receiver, for collective comm. they must be the same.

27-Oct-21 http://www.chpc.utah.edu Slide 23

• Address displacement
 MPI_Get_address(location, address)
 int MPI_Get_address(void *location,

MPI_Aint *address)
• Derived date type create
 MPI_Type_create_struct(count, bl_len, displ, typelist,

new_mpi_t)
 int MPI_Type_create_struct(int count, int bl_len[],

MPI_Aint displ[], MPI_Datatype typelist[],
MPI_Datatype *new_mpi_t)
MPI_Type_create_struct(3,blk_len,displ,typel,mesg_ptr);

• Derived date type commit/free
 MPI_Type_commit(new_mpi_t)
 int MPI_Type_commit(MPI_Datatype *new_mpi_t)
 MPI_Type_free(new_mpi_t)
 int MPI_Type_free(MPI_Datatype *new_mpi_t)

Derived data types

Presenter
Presentation Notes
Address – location is the variable symbol itself, in C pointer to the variable, address is the memory address of the variable as an integer
=> e.g. in supercomputers with word addresses and PCs – pointer <> address
Type_struc – no of sub-types, their length(= how many of each are there), their memory displacement (from the first variable in the derived type – taken from the MPI_Address), types of the sub-types (must be MPI defined type + previously defined DDT), the new type (pointer in C)
Commit – just takes the new type as argument

• Simpler d.d.t. constructors
 MPI_Type_contiguous

= contiguous entries in an array
 MPI_Type_vector

= equally spaced entries in an array
 MPI_Type_indexed

= arbitrary entries in an array

27-Oct-21 http://www.chpc.utah.edu Slide 24

Derived data types

Presenter
Presentation Notes
= basically the same as send an array with N count – can use to send an array of structures which have perfect memory alignment
e.g. struct { double x,y,z; double mass;}
vector – e.g. to send a matrix row in Fortran (since it is column-major order)
indexed – variables of the same type and length that have non-equal spacing
There are also versions with h prefix (MPI_Type_hvector,…), which use bytes as datatype length displacements

User-controlled
data packing

void Exch_data(float *a,float *b,int *n,int my_rank){
char buffer[100];

int position = 0;

if (my_rank == 0){

MPI_Pack(a,1,MPI_FLOAT,buffer,100,&position,MPI_COMM_WORLD);
MPI_Pack(b,1,MPI_FLOAT,buffer,100,&position,MPI_COMM_WORLD);
MPI_Pack(n,1,MPI_INT,buffer,100,&position,MPI_COMM_WORLD);
MPI_Bcast(buffer,100,MPI_PACKED,0,MPI_COMM_WORLD);}

else{

MPI_Bcast(buffer,100,MPI_PACKED,0,MPI_COMM_WORLD);
MPI_Unpack(buffer,100,&position,a,1,MPI_FLOAT,MPI_COMM_WORLD);
MPI_Unpack(buffer,100,&position,b,1,MPI_FLOAT,MPI_COMM_WORLD);
MPI_Unpack(buffer,100,&position,n,1,MPI_INT,MPI_COMM_WORLD);}

}

27-Oct-21 http://www.chpc.utah.edu Slide 25

Presenter
Presentation Notes
Pack/Unpack – another way to send heterogeneous data in one message
In this routine, packing/unpacking and communication take place
If I am first node, pack the integral info, and bcast it
all the other nodes receive the bcast first and then unpack the message.
Keep in mind that packing and unpacking are done in the same order
This way is simpler for small amount of data than DDT, but will be more bothersome with larger amounts.

MPI_Pack/Unpack

• Explicit storing of noncontiguous data for communication
• Pack – before send
 MPI_Pack(pack_data, in_cnt, datatype, buf, buf_size,

position, comm, ierr)
 int MPI_Pack(void *pack_data, int in_cnt, MPI_Datatype

datatype, void *buf, int buf_size,
int *position, MPI_comm comm)

MPI_Pack(a,1,MPI_FLOAT,buffer,100,&position,MPI_COMM_WORLD);

• Unpack – after receive
 MPI_Unpack(buf, size, position, unpack_data, cnt,

datatype, comm, ierr)
 int MPI_Unpack(void *buf, int size, int *position,

void *unpack_data, int cnt, MPI_Datatype
datatype, MPI_comm comm)

• position gets updated after every call to MPI_Pack/Unpack
MPI_Unpack(buffer,100,&position,a,1,MPI_FLOAT,MPI_COMM_WORLD);

27-Oct-21 http://www.chpc.utah.edu Slide 26

Presenter
Presentation Notes
= in a used-provided buffer
Pack syntax – the variable to be packed, its amount, type, buffer that this var is packed in, its size (from previous definition), position at which the variable is packed (gets increased after every pack call to MPI_PACK, must be 0 in first call to MPI_Pack), communicator
Unpack – the buffer to be unpacked, its size, position, variable in which the unpacked data is to be stored, , their count, type, communicator

Which communication
method to use

• count and datatype
 sending contiguous array or a scalar
• MPI_Pack/Unpack
 sending heterogeneous data only once
 variable length messages (sparse matrices)
• Derived data types
 everything else, including:
 repeated send of large heterogeneous data
 sending of large strided arrays

27-Oct-21 http://www.chpc.utah.edu Slide 27

Presenter
Presentation Notes
single communication – overhead from creating the derived data type is pretty high – pack/unpack better
sparse matrices – each row – first no of nonzero elements, then the element values and positions
d.d.t. – use MPI_Type_struct
 - use MPI_Type_indexed

Advanced topics

• Advanced point-to-point communication
• Specialized collective communication
• Process groups, communicators
• Virtual processor topologies
• Error handling
• MPI I/O
• Dynamic processes
• One sided communication

27-Oct-21 http://www.chpc.utah.edu Slide 28

Presenter
Presentation Notes
there is a lot of various collective operations
as I have already mentioned, user can create his own process groups,…
can map processes on carthesian grid or on unstructured graph – MPI mapping may improve performance via optimal connectivity (as opposed to hardcoded mapping)
can design our own error handlers – I.e. if communication is not successful, may take care of it internally and not have to crash the program.
possible faster I/O than by using sequential IO on each node
can vary number of processes that are used by the MPI application

Collective non-blocking
communication example

double _Complex out1[FNxy], out2[FNxy], *commbuf, *compbuf;

for (iis=0; iis <= FNlocs; iis++) {

if (iis%2==1) commbuf=out2; else commbuf=out1;

xind = iis*FNxy;

MPI_Iallgatherv(&(vecin[xind]), FNxy, MPI_DOUBLE_COMPLEX, commbuf, counts,
stride, MPI_DOUBLE_COMPLEX, MPI_COMM_WORLD,&allg_handle);

if (iis%2==0) compbuf=out2; else compbuf=out1;

if (iis>0) {

for (iir=0;iir<FNloc;iir++) {

iy = iir*FNxy;

for (ip=0;ip<numprocs;ip++) {

ia = iy + ipoffA[ip] * Fnxy*FNloc;

for (ix=0;ix<FNxy;ix++)

vecout[iy+ix] += A[(ia+ix)] * compbuf[ipoffV[ip]+ix];

}

MPI_Wait(&allg_handle,&allg_status);

}}

27-Oct-21 http://www.chpc.utah.edu Slide 29

2 communication buffers +
comm and comp pointers

swap comm. buffer

swap comp. buffer

vector offset

matrix offset

Distributed matrix-vector multiply, vecout[M]=A[M][M]*vecin[M]

Gather vecin into commbuf

use current compbuf
(part of vector vecin)

in M-V product

Presenter
Presentation Notes
All the PTP we discussed so far was blocking – code does not return to the execution until the communication is over.
Non-blocking …… achieved by posting a request for communication by NBL versions of send, receive = requires 2 function calls, to start the communication and to complete it.
Initiation – like send/recv, but one more variable, handle to the communication request.
Completion via MPI_Wait, can use MPI_Test to find if this request has been performed
= the requests take system resources
Also note that it is legal to match blocking and nbl. operations – e.g. MPI_Isend can be received by MPI_Recv

To learn more

• MPI spec and text book
– https://www.mpi-forum.org/

– Pacheco – Introduction to Parallel Programming
• XSEDE HPC Summer Boot Camp

– OpenMP, OpenACC, MPI
– https://www.youtube.com/XSEDETraining

• XSEDE online training
– https://www.xsede.org/web/xup/online-training

27-Oct-21 http://www.chpc.utah.edu Slide 30

Presenter
Presentation Notes
Some useful references:
MPI – MPI project main web site – links from here to manuals, tutorials,…
Books – many, but those two are quite good and explanatory
And our website contains info on the systems, software on CHPC

https://www.mpi-forum.org/
https://www.cs.usfca.edu/%7Epeter/ipp/index.html
https://www.youtube.com/XSEDETraining
https://www.xsede.org/web/xup/online-training

Summary

• Basics
• Point-to-point communication
• Collective communication
• Grouping data for communication

http://www.chpc.utah.edu/short_courses/intro_mpi

27-Oct-21 http://www.chpc.utah.edu Slide 31

Presenter
Presentation Notes
How to start, finalize MPI, find no of processes and my node no., data types
PTP – send/recv, comm. modes (synchr., ready, buffered), non-blocking
broadcast, reduce, gather,…
derived data types, pack/unpack
CHPC webpage address of the talk
and a short but concise reference to the MPI-1 routines

Security Policies

• No clear text passwords use ssh and scp
• You may not share your account under any

circumstances
• Don’t leave your terminal unattended while

logged into your account
• Do not introduce classified or sensitive work

onto CHPC systems
• Use a good password and protect it

27-Oct-21 http://www.chpc.utah.edu Slide 32

Security Policies

• Do not try to break passwords, tamper with files
etc.

• Do not distribute or copy privileged data or
software

• Report suspicians to CHPC
(security@chpc.utah.edu)

• Please see
http://www.chpc.utah.edu/docs/policies/security.
html for more details

27-Oct-21 http://www.chpc.utah.edu Slide 33

mailto:security@chpc.utah.edu
http://www.chpc.utah.edu/docs/policies/security.html

Future Presentations

• MPI-IO
• Introduction to OpenMP
• Hybrid MPI/OpenMP programming
• Debugging
• Profiling
• Mathematical Libraries at the CHPC

27-Oct-21 http://www.chpc.utah.edu Slide 34

Presenter
Presentation Notes
Icebox – how to take advantage of more complex features that Icebox provides
Intro to OpenMP – loop-based parallelism and going beyond that
Intermediate – different communication protocols, more specialized comm routines (gather, scatter, reduce,…)

	Introduction to MPI
	Overview
	Distributed memory
	MPI Basics
	Example 1
	Program output
	MPI header files
	Basic MPI functions
	Basic point-to-point communication
	Message send/recv
	Predefined data �structures
	Slide Number 12
	Non-blocking �communication
	Example 2 �numerical integration
	Program core
	Program core - code
	Program core - code
	Program output	
	Collective�communication
	More collective �communication
	Derived data types
	Slide Number 22
	Slide Number 23
	Slide Number 24
	User-controlled �data packing
	MPI_Pack/Unpack
	Which communication �method to use
	Advanced topics
	Collective non-blocking �communication example
	To learn more
	Summary
	Security Policies
	Security Policies
	Future Presentations

