
Introduction to Parallel
Computing

Martin Čuma
Center for High Performance Computing

University of Utah
m.cuma@utah.edu

15-Mar-22 Slide 1https://git.io/CHPC-Intro-to-Parallel-Computing

Overview

• Types of parallel computers.
• Parallel programming options.
• OpenMP, OpenACC, MPI
• Higher level languages
• Debugging, profiling and libraries
• Summary, further learning.

15-Mar-22 Slide 2https://git.io/CHPC-Intro-to-Parallel-Computing

How to compute
faster

• Faster CPU clock speed
– Higher voltage = more heat – not sustainable

• Work distribution
– Vectorization – process more than one value

at a time
– Parallelization – spread work over multiple

processing elements
– Specialization – application specific

processors (ASIC), programmable logic
(FPGA)

15-Mar-22 Slide 3https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
ASIC - Application-specific integrated circuit

Computer architectures

Single processor:
• SISD – single instruction single data.
Multiple processors:
• SIMD - single instruction multiple data.
• MIMD – multiple instruction multiple data.

 Shared Memory
 Distributed Memory

 Current processors combine SIMD and MIMD
 Multi-core CPUs w/ SIMD instructions (AVX, SSE)
 GPUs with many cores and SIMT

15-Mar-22 Slide 4https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
SISD – one instruction queue, one processing unit
SIMD – one queue but more processing at the time – specialized CPUs, often a lot of small (4,7,16) bit processing units
MIMD – full SISD CPUs aligned along in parallel – the choice now – can use cheap comodity CPUs

Shared memory
• All processors have

access to local memory
• Simpler programming
• Concurrent memory

access
• More specialized

hardware
• Representatives:

– Linux clusters nodes 12-
128 cores

– GPU nodes

15-Mar-22 Slide 5

BUS
CPU

CPU

Memory

Memory

Dual quad-core node

BUS

CPU

CPU

Memory

Memory

CPU

CPU

Memory

Memory

Many-CPU node (e.g. SGI)

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Local memory – either through a bus – but bus gets saturated with more CPUs – adding cache helps decrease traffic on the bus
 - or via a switch – fast switches are very expensive
 = often a compromise, smaller switch on a top of the bus
Simpler programming – all processes share memory – don’t have to worry about data synchronization
Concurrent MA + memory synchronization when have cache – this can slow down execution as processes have to wait if the memory is being accessed by other process.
Inca – bus based
Raptor – distributed memory banks on node boards that include 2 CPUs and memory, but connected via fast bus, max. 128 CPUs

Distributed memory

• Process has access only
to its local memory

• Data between processes
must be communicated

• More complex
programming

• Cheap commodity
hardware

• Representatives:
Linux clusters

15-Mar-22 Slide 6

BUS
CPU

CPU

Memory

Memory

Node Netw
ork

Node

Node

Node

Node

Node

Node

Node

8 node cluster (64 cores)

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
no idea on what’s going on on the other process
Programmer must be aware of this and design the program to send the needed data from one process to another
Advantage – just a simple SISD machine connected by a network – cheap. More expensive alternatives speed up the node network connection – faster switches, different network protocols, …
Linux cluster – the cheapest supercomputer.

Ways of program
execution

• Process (task)
Entity that executes a program – has its own memory
space, execution sequence, is independent from other
processes

• Thread
Has own execution sequence but shares memory
space with the original process - a process may have
many threads

15-Mar-22 Slide 7

F
O
R
K

J
O
I
NProcess

Threads

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

Parallel programming
options

Shared Memory
• Threads

– POSIX Pthreads, OpenMP (CPU, MIC), OpenACC, CUDA
(GPU)

• Processes
– message passing, independent processes

Distributed Memory
• Independent processes
• Message passing libraries

– General – MPI, PVM, language extensions (Co-array Fortran,
UPC. …)

Higher level programming languages (Python, R, Matlab)
do a combination of these approaches under the hood.

15-Mar-22 Slide 8https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

Parallel programming
options hierarchy

• Instruction level (ILP)
– Instruction pipelining, speculative

execution, branch prediction, …
• Vector (SIMD)
• Multi-core/Multi-socket SMP
• Accelerators (GPU, MIC)
• FPGA, ASIC
• Distributed clusters

15-Mar-22 Slide 9

Compiler (not
your problem)

OpenMP
OpenACC

Very specialized
MPI

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
SISD – one instruction queue, one processing unit
SIMD – one queue but more processing at the time – specialized CPUs, often a lot of small (4,7,16) bit processing units
MIMD – full SISD CPUs aligned along in parallel – the choice now – can use cheap comodity CPUs

Mapping programming
options to the hardware

15-Mar-22 Slide 10

CPU
cores

Memory

Memory
GPU cores

Network

Compute cluster

Compute
node

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
SISD – one instruction queue, one processing unit
SIMD – one queue but more processing at the time – specialized CPUs, often a lot of small (4,7,16) bit processing units
MIMD – full SISD CPUs aligned along in parallel – the choice now – can use cheap comodity CPUs

OpenMP basics
• Compiler directives to parallelize (CPU or GPU)
 Fortran – source code comments
!$omp parallel/!$omp end parallel

 C/C++ - #pragmas
#pragma omp parallel

• Small set of subroutines
• Degree of parallelism specification
 OMP_NUM_THREADS or
omp_set_num_threads(INTEGER n)

15-Mar-22 Slide 11https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
OpenMP – not a new language
comp. Directives – specific format for Fortran and C – need a special compiler
Subroutines – small library to query and set no. of nodes, process node number,…

OpenACC Basics
• Compiler directives to offload to GPU
 Fortran – source code comments
!$acc kernels/!$acc end kernels

 C/C++ - #pragmas
#pragma acc kernels

• Small set of subroutines
• Data movement and locality directives

15-Mar-22 Slide 12https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
OpenMP – not a new language
comp. Directives – specific format for Fortran and C – need a special compiler
Subroutines – small library to query and set no. of nodes, process node number,…

MPI Basics
• Communication library
• Language bindings:
 C/C++ - int MPI_Init(int argv, char*
argc[])

 Fortran - MPI_Init(INTEGER ierr)

• Quite complex (100+ subroutines)
but only small number used frequently

• User defined parallel distribution

15-Mar-22 Slide 13https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
In which data are communicated from one process to another – either point-to-point or collective (more procs. involved)
Since it is a library, don’t need special compiler, the mpif90,… commands some user may be familiar with are just scripts that specify locations of the MPI libraries, … and they call standard compilers.
But can write simple program with a handful of subroutines
= can not change number of nodes used by the code on the fly (but can create a sub-communicator that can take only a fraction of the allocated nodes)

Program example

• saxpy – vector addition:
• simple loop, no cross-dependence, easy to

parallelize
subroutine saxpy_serial(z, a, x, y, n)
integer i, n
real z(n), a, x(n), y(n)

do i=1, n
z(i) = a*x(i) + y(i)

enddo
return

15-Mar-22 Slide 14

yxaz +=

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Just loop through all the vector dimension, calculate the product and store in z(i)

OpenMP program
example

subroutine saxpy_parallel_omp(z, a, x, y, n)
integer i, n
real z(n), a, x(n), y(n)

!$omp parallel do
do i=1, n

z(i) = a*x(i) + y(i)
enddo
return

$ gfortran –fopenmp saxpy.f

$ export OMP_NUM_THREADS=16

$./a.out

15-Mar-22 Slide 15

FORK

JOIN

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Just one extra directive to parallelize the loop
Automatic load balance (although there are options to modify this)
Set the number of nodes via OMP_NUM_NODES
Won’t say more about OpenMP, but its syntax is relatively simple – less than 10 directives, about the same amount of functions, ca 15 options that control data sharing, thread execution order,…

OpenMP caveats

15-Mar-22 Slide 16

• Data dependencies
– Private (thread-local) variables
– Flow dependence – rearrangement
– Reduction (sum over threads)

• Scheduling
– What runs on what thread – schedule, task,…

• Advanced features
– Thread affinity (to CPU core)
– Vectorization
– Accelerator offload

x = a(i)
b(i) = c + x

a(i) = a(i+1) + x

x += a(i)

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Just one extra directive to parallelize the loop
Automatic load balance (although there are options to modify this)
Set the number of nodes via OMP_NUM_NODES
Won’t say more about OpenMP, but its syntax is relatively simple – less than 10 directives, about the same amount of functions, ca 15 options that control data sharing, thread execution order,…

OpenACC program
example

subroutine saxpy_parallel_oacc(z, a, x, y, n)
integer i, n
real z(n), a, x(n), y(n)

!$acc kernels datain(x,y) dataout(z)
do i=1, n

z(i) = a*x(i) + y(i)
enddo
return

$ pgfortran –acc –Minfo=accel saxpy.f

$ pgaccelinfo

$./a.out

15-Mar-22 Slide 17

Offload to
GPU

Return
from GPU

To verify that GPU is available

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Just one extra directive to parallelize the loop
Automatic load balance (although there are options to modify this)
Set the number of nodes via OMP_NUM_NODES
Won’t say more about OpenMP, but its syntax is relatively simple – less than 10 directives, about the same amount of functions, ca 15 options that control data sharing, thread execution order,…

OpenACC caveats

15-Mar-22 Slide 18

• Data dependencies (Like in OpenMP)
• Data locality

– Transfers from host to GPU and back take time
– need to minimize them
#pragma acc data [copyin, copyout, create,...]

• Parallel regions
– More explicit execution control (warps, threads)
#pragma acc parallel

• Procedure calls
– If procedure is executed on the GPU
#pragma acc routine

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Just one extra directive to parallelize the loop
Automatic load balance (although there are options to modify this)
Set the number of nodes via OMP_NUM_NODES
Won’t say more about OpenMP, but its syntax is relatively simple – less than 10 directives, about the same amount of functions, ca 15 options that control data sharing, thread execution order,…

MPI program example

subroutine saxpy_parallel_mpi(z, a, x, y, n)
integer i, n, ierr, my_rank, tasks, i_st, i_end
real z(n), a, x(n), y(n)

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD,my_rank,ierr)
call MPI_Comm_size(MPI_COMM_WORLD,tasks,ierr)
i_st = n/tasks*my_rank+1
i_end = n/tasks*(my_rank+1)

do i=i_st, i_end
z(i) = a*x(i) + y(i)

enddo
call MPI_Finalize(ierr)
return

15-Mar-22 Slide 19

z(i) operation on 4 processes (tasks)

z(1
… n/4)

z(n/4+1
… 2*n/4)

z(2*n/4+1
… 3*n/4)

z(3*n/4+1
… n)

P0 P1 P2 P3

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
must initialize and finalize MPI
The vectors are distributed on the CPUs (or x(i) is full on all CPUs)
Must calculate starting and finishing vector index for each node
Final vector z(i) is distributed on the nodes (would have to send the data the node does not own from the other nodes)

MPI program example

15-Mar-22 Slide 20

• Result on the first CPU
include "mpif.h"
integer status(MPI_STATUS_SIZE)
if (my_rank .eq. 0) then
do j = 1, tasks-1
do i= n/tasks*j+1, n/tasks*(j+1)
call MPI_Recv(z(i),1,MPI_REAL,j,0,MPI_COMM_WORLD,

& status,ierr)
enddo

enddo
else
do i=i_st, i_end

call MPI_Send(z(i),1,MPI_REAL,0,0,MPI_COMM_WORLD,ierr)
enddo

endif

Data Count
Sender

Recipient

P0

P1

P2

P3

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Here comes an actual message passing
All the processes apart from no. 0 send their results to process 0
Very inefficient – send one real at the time. Can speed this up by setting count to n/nodes, but then would have to take care of the receiving buffer – will show a better solution on the next slide.
Also, MPI provides various functions to optimize the communication count via so called derived datatypes.
Look at the syntax of the Send/Recv calls, most of the communication subroutines have similar syntax:
Communicated data, their count and type, sender/receiver, tag and communicator. Tag and communicator serve to differentiate between various kinds of messages that can be in transport at given time.

MPI program example

• Collective communication
real zi(n)
j = 1
do i=i_st, i_end

zi(j) = a*x(i) + y(i)
j = j +1

enddo
call MPI_Gather(zi,n/nodes,MPI_REAL,z,n/nodes,MPI_REAL,
& 0,MPI_COMM_WORLD,ierr)

• Result on all nodes
call MPI_AllGather(zi,n/nodes,MPI_REAL,z,n/nodes,
& MPI_REAL,MPI_COMM_WORLD,ierr)

15-Mar-22 Slide 21

Send data Receive data

Root process

No root process

zi(i)
z(i)

zi(i)
zi(i)
zi(i) Process 0

Process 1
Process 2
Process 3

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
To give a feel of MPI complexity:
Collective communication involves all the nodes at given time – don’t have to split using if statements
Gather – sends data from all processes to root process (here 0)

MPI caveats

15-Mar-22 Slide 22

• Explicit task based parallelism
– manual work distribution
– task communication and synchronization

• Communication patterns
– due to different data distribution

• Many advanced features
– blocking vs. non-blocking communication
– derived data types
– topologies
– …

broadcast
reduction
gather/scatter
…

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Just one extra directive to parallelize the loop
Automatic load balance (although there are options to modify this)
Set the number of nodes via OMP_NUM_NODES
Won’t say more about OpenMP, but its syntax is relatively simple – less than 10 directives, about the same amount of functions, ca 15 options that control data sharing, thread execution order,…

MPI distributions

• Different networks
– Ethernet
– InfiniBand
– Intel OmniPath
– most MPI distributions now come with multiple networks

support
• Several distributions follow the MPI standard

– MPICH, MVAPICH2
– Intel MPI, Cray MPI,…
– OpenMPI
– Ensure that build and run is done with the same distribution

(ABI compatibility)

15-Mar-22 Slide 23https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Interactive batch – use reasonable time limits, mostly used for debugging
Batch – production runs – check the right syntax on SP and IB

Hands on

• Log into to ondemand.chpc.utah.edu
• Go to Jobs – Job Composer
• Click on Templates
• Show 50 entries
• Choose and run the following jobs:

– Simple OpenMP job
– Simple MPI job
– Modify the *.sh SLURM job script
– In both cases, use notchpeak-shared-short as the account

and partition and notchpeak as a cluster
• Bonus – run Simple hybrid MPI and OpenMP Job

15-Mar-22 Slide 24https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Interactive batch – use reasonable time limits, mostly used for debugging
Batch – production runs – check the right syntax on SP and IB

But wait, my program is
not in C or Fortran

Interpreted languages are popular
• Matlab, Python, R

Each has some sort of parallel support, but most
likely it will not perform as well as using OpenMP
or MPI with C/Fortran.

Try to parallelize (and optimize) your
Matlab/Python/R code and if it’s still not enough
consider rewriting in C++ or Fortran.

15-Mar-22 Slide 25https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

Cluster running options
for Matlab, Python, R

• Using parallelization in the program run through
interactive or batch job
– multi-threading and/or multi-processing packages

(parfor, mpi4py, R parallel, Rmpi, …)
• Using built in job submission

– Matlab Parallel Server, rslurm, python Dask,
snakemake

• Independent calculations in parallel
– launching concurrent calculations in a job

15-Mar-22 Slide 26https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

Matlab

Threads
• Built in Matlab functions. Vector/matrix operations

threaded (and vectorized) through Intel MKL library,
many other functions also threaded

Tasks (processes)
• Parallel Computing Toolbox allows for task based

parallelism
• Parallel Server can distribute tasks to multiple nodes
• Great for independent calculations, when

communication is needed uses MPI under the hood
https://www.chpc.utah.edu/documentation/software/matlab.
php

15-Mar-22 Slide 27https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

https://www.chpc.utah.edu/documentation/software/matlab.php

Matlab tasks

• Parallel program
function t = parallel_example
parfor idx = 1:16
A(idx) = idx;

end

• Parallel worker pool on a single machine
poolobj=parpool('local',8);
parallel_example;
delete(poolobj);

• Parallel pool on a cluster
c = parcluster;
c.AdditionalProperties.QueueName = 'kingspeak';
...
j = c.batch(@parallel_example, 1, {}, 'Pool', 4);
j.State
j.fetchOutputs{:}

15-Mar-22 Slide 28

Will launch loop iterations on
multiple workers

Starts multiple workers pool

Submits cluster job

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

Matlab examples

• Parallel worker pool on a single node
– best run from a SLURM job

loop_parallel_onenode.m, run_matlab_onenode.m,
run_matlab_onenode.slr

– https://git.io/CHPC-Intro-to-Parallel-Computing-Matlab
– sbatch run_matlab_onenode.slr

• Parallel worker pool on a multiple nodes
– must run from inside of Matlab
– start Matlab on interactive node inside of a FastX session
ml matlab

matlab &

– loop_parallel.m, parallel_multinode.m
parallel_multinode

15-Mar-22 Slide 29https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/loop_parallel_onenode.m
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/run_matlab_onenode.m
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/run_matlab_onenode.slr
https://git.io/CHPC-Intro-to-Parallel-Computing-Matlab
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/loop_parallel.m
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Matlab-examples/parallel_multinode.m

Matlab hands on

• In OnDemand open a terminal (Clusters – Notchpeak)
• Git clone the repository
git clone https://github.com/CHPC-UofU/CHPC-presentations.git

cd CHPC-presentations/Intro-to-Parallel-Computing/Matlab-examples/

• Either submit the serial job from terminal, or via
OnDemand

• For the parallel jobs, open Interactive Apps – Matlab and
run through this Matlab

15-Mar-22 Slide 30https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

https://github.com/CHPC-UofU/CHPC-presentations.git

R

Threads
• Under the hood threading with specially built (or

Microsoft) R for vector/matrix operations using MKL
• parallel R library
Tasks (processes)
• parallel R library (uses multicore for shared and snow for

distributed parallelism)
• Parallelized *apply functions, e.g. mclapply
• Rmpi library provides MPI like functionality
• Many people run multiple independent R instances in

parallel
https://www.chpc.utah.edu/documentation/software/r-
language.php

15-Mar-22 Slide 31https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

https://www.chpc.utah.edu/documentation/software/matlab.php

Parallel R on a cluster

15-Mar-22 Slide 32

• Load libraries
library(parallel)

library(foreach)

library(doParallel)

• Start R cluster
hostlist <- paste(unlist(read.delim(file="hostlist.txt",
header=F, sep =" ")))

cl <- makeCluster(hostlist)

registerDoParallel(cl)

clusterEvalQ(cl,.libPaths("/uufs/chpc.utah.edu/sys/installdir/
RLibs/3.5.2i"))

• Run parallel loop
r <- foreach(icount(trials), .combine=rbind) %dopar% {}

• Stop R cluster
stopCluster(cl)

hostlist.txt comes from a job script
srun -n $SLURM_NTASKS hostname > hostlist.txt

this is only needed if running on multiple nodes

https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

R examples

• Parallel R on one node
– best run from a SLURM job

parallel-onenode-iris.R, R-parallel-onenode-iris.slr
– https://git.io/CHPC-Intro-to-Parallel-Computing-R
– sbatch R-parallel-onenode-iris.slr

• Parallel R multiple nodes
– must specify list of nodes where R workers run

parallel-multinode-iris.R, R-parallel-multinode-iris.slr-
– sbatch R-parallel-onenode-iris.slr

• Submit SLURM job directly from R - rslurm
– SLURM-aware apply function, some issues with results

collection
– rslurm-example.R

15-Mar-22 Slide 33https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/R-examples/parallel-onenode-iris.R
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/R-examples/R-parallel-onenode-iris.slr
https://git.io/CHPC-Intro-to-Parallel-Computing-R
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/R-examples/parallel-multinode-iris.R
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/R-examples/R-parallel-multinode-iris.slr
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/R-examples/rslurm-example.R

Python

Threads
• No threads in Python code because of GIL (Global

Intepreter Lock)
• C/Fortran functions can be threaded (e.g. NumPy -

Anaconda)
Tasks (processes)
• Several libraries that use MPI under the hood, most

popular is mpi4py
• More-less MPI function compatibility, but slower

communication because of the extra overhead
• Also many other data-parallel libraries, e.g. Dask
https://www.chpc.utah.edu/documentation/software/python.
php

15-Mar-22 Slide 34https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

https://www.chpc.utah.edu/documentation/software/matlab.php

Python - Jupyter

• Several options
listed at
https://www.chpc.utah.
edu/documentation/soft
ware/jupyterhub.php

• The easiest is to
use Open
OnDemand

15-Mar-22 Slide 35https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

https://www.chpc.utah.edu/documentation/software/jupyterhub.php

Python tasks

• Our personal favorite is to ignore all the Python parallel
efforts, divide the data into independent parts and run
multiple Python processes on parts of the data
concurrently

• Only works if data can be split
• Use various approaches for independent parallel

calculations listed at
https://www.chpc.utah.edu/documentation/software/seria
l-jobs.php

• More on this later

15-Mar-22 Slide 36https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

https://www.chpc.utah.edu/documentation/software/serial-jobs.php

Python- Dask

• With relatively small effort one can use Dask
• Install Miniconda
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-
x86_64.sh

bash ./Miniconda3-latest-Linux-x86_64.sh -b -p
$HOME/software/pkg/miniconda3

mkdir -p $HOME/MyModules/miniconda3

cp
/uufs/chpc.utah.edu/sys/installdir/python/modules/miniconda3/latest.lua
$HOME/MyModules/miniconda3

• Use own miniconda and install Jupyter and Dask
module use $HOME/MyModules

module load miniconda3/latest

conda install jupyter dask "notebook>=6.0"

• Start Open OnDemand Jupyter notebook
– log into ondemand.chpc.utah.edu with CHPC credentials

15-Mar-22 Slide 37https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

Python- Dask

• Go to Interactive Apps - Jupyter Notebook on notchpeak
• In the Environment Setup text box, put (my Miniconda3):
module use /uufs/chpc.utah.edu/common/home/u0101881/MyModules

module load miniconda3/dask

• Use notchpeak-shared-short for account and partition, and
select your choice of CPU cores and walltime hours (within
the listed limits). Then hit Launch to submit the job.

• Once the job starts, hit the blue Connect to Jupyter button
• Open one of the following notebooks:

dask_embarrass.ipynb, dask_slurmcluster.ipynb,
dask_slurm_xarray.ipynb

• DASK also allows to submit jobs to SLURM (last 2 examples)

15-Mar-22 Slide 38https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Python-examples/dask_embarrass.ipynb
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Python-examples/dask_slurmcluster.ipynb
https://github.com/CHPC-UofU/CHPC-presentations/blob/master/Intro-to-Parallel-Computing/Python-examples/dask_slurm_xarray.ipynb

Independent calculations

• Different approaches based on the nature of the
calculations
– Runtime length, variability, number of calculations

• Similar runtime, small calculation count
– Shell script in a SLURM job

#!/bin/bash
for ((i=0; i < $SLURM_NTASKS ; i++)); do
/path_to/myprogram $i &

done
wait

– srun –multi-prog
srun --multi-prog my.conf
cat my.conf
0-11 ./example.sh %t

https://www.chpc.utah.edu/documentation/software/serial-
jobs.php

15-Mar-22 Slide 39https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

https://www.chpc.utah.edu/documentation/software/serial-jobs.php

Variable runtime

• Mini-scheduler inside of a job
– to launch calculations till all are done
– GNU Parallel - https://www.gnu.org/software/parallel/
– TACC Launcher - https://www.tacc.utexas.edu/research-

development/tacc-software/the-launcher
– CHPC Submit -

https://www.chpc.utah.edu/documentation/software/serial-
jobs.php#submit

• Workflow managers
– Makeflow, Swift, Snakemake, Pegasus

• Distributed computing resources
– Open Science Grid - https://opensciencegrid.org/

15-Mar-22 Slide 40https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Shared memory
Threaded – pthreads – simple multitasking library (can run also in SISD computers), not suitable for complex parallel programming
OpenMP – first standard in sh. mem. supported by major vendors (Intel, Sun, SGI, IBM, Compaq, Fujitsu)
mess. Pasing – works here too, and is generally faster than on dist. mem, but there is overhead (message creation, reception)
Tests on sh. mem. multiprocessors show that MPI and OpenMP timings are similar, but OpenMP is easier to code.
BUT – since it’s a younger development, there are many unresolved issues (mixed Fortran-C applications, easy to write incorrect programs that work – shared, private variables – compared to implicit variable declaration in Fortran – easy to write but only if code correctly)
Distributed memory
old times – vendor specific – n.p. = a lot of effort needed to be spent to get the code running on different comp. Platform.
Now – last 10 yrs. - portable libraries, PVM – first, MPI, latest (last 5-6 yrs.)

https://www.gnu.org/software/parallel/
https://www.tacc.utexas.edu/research-development/tacc-software/the-launcher
https://www.chpc.utah.edu/documentation/software/serial-jobs.php#submit
https://opensciencegrid.org/

Debuggers
• Useful for finding bugs in programs
• Several free

 gdb – GNU, text based, limited parallel
 ddd – graphical frontend for gdb

• Commercial that come with compilers
 pgdbg – PGI, graphical, parallel but not intuitive
 pathdb, idb – Pathscale, Intel, text based

• Specialized commercial
 totalview – graphical, parallel, CHPC has a license
 ddt - Distributed Debugging Tool
 Intel Inspector – memory and threading error checker

• How to use:
 http://www.chpc.utah.edu/docs/manuals/software/par_

devel.html

15-Mar-22 Slide 41https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
None of these is paricularly great (won’t catch many memory bugs, for example), apart from Insure, which is good but only for C/C++
Need to finish the webpage….

Debuggers - parallel

• Parallel debugging more complex due to interaction
between processes

• DDT is the debugger of choice at CHPC
 Expensive but academia get discount
 How to run it:

 compile with –g flag
 run ddt command
 fill in information about executable, parallelism, …

 Details:
https://www.chpc.utah.edu/documentation/software/debugging

.php

 Further information
https://www.allinea.com/products/ddt

15-Mar-22 Slide 42https://git.io/CHPC-Intro-to-Parallel-Computing

Debuggers – parallel

15-Mar-22 Slide 43https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
On the left side up, the window displays running processes (here 4)
On the right side is the debugger window
On the left side down is the variable inspection window.
To switch between the process debug views, double click the process in the process window, or push the arrow (up, down) in the main window.
Then describe the features on the main window.

Profilers

• Measure performance of the code
• Serial profiling

– discover inefficient programming
– computer architecture slowdowns
– compiler optimizations evaluation
– gprof, pgprof, pathopt2, Intel tools

• Parallel profiling
– target is inefficient communication
– Intel Trace Collector and Analyzer, Advisor,

VTune

15-Mar-22 Slide 44https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Speedshop – mostly serial, but has MPI routine time tracing capability
Xprofiler – probably similar to speedshop, now does not run since the MPI is not working fully correctly
Vampir – very good profiler designed specifically for MPI, records time spend in communication thus pointing to where the user should concentrate his effort to speed up the application

Profilers - parallel

15-Mar-22 Slide 45https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Top window is the main menu part, through which can be open and customized the windows below
Global timeline shows execution profile of the program’s processes. It can be zoomed to particular region. Displays type of activity and messages direction and duration
Summary chart summarizes what time was spent where
Global activity chart does the same thing for each process
Parallelization shows distribution of the activity aligned with time, which shows what was run in parallel and what not.
All the windows have right click menus that enable to customize the views.
Overall, this profiler is very user friendly and easily customizable.
For this program we see that main part of the job is in the initial MPI_Bcast, which broadcasts initial data from process 0 to the rest. Here is the major area for the improvement.

Libraries
• Use libraries for common operations
• Serial
 BLAS, LAPACK – linear algebra routines
 MKL, ACML – hardware vendor libraries

• Parallel
 ScaLAPACK, PETSc, FFTW
 MKL – dense and sparse matrices

 Design a new code around existing library
 PETSc, Trilinos,…

15-Mar-22 Slide 46https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Not everything needs to be programmed from the scratch. Most of the vendors and many independent organizations supply libraries that can be used for commonly used tasks.
One of them – numerical math.
Most of the stuff is on Raptor – SGI’s SCSL is parallelized linear algebra library similar to BLAS and LAPACK, PETSc is more for numerical solutions of PDEs, NAG contains many routines from linal, PEDs, Fourier transforms,… Should be callable from both C and Fortran
SP has IBM’s version of SCALAPACK – parallel LAPACK – PESSL
Icebox currently does not have anything installed, but can try for PBLAS, SCALAPACK or PETSc, which are public domain. If you are interested, send us e-mail.

Single executable across
desktops and clusters

• MPICH, MVAPICH2 and Intel MPI are cross-compatible using the same
ABI

– Can e.g. compile with MPICH on a desktop, and then run on the cluster using MVAPICH2
and InfiniBand

• Intel and PGI compilers allow to build "unified binary" with optimizations for
different CPU platforms

– But in reality it only works well under Intel compilers
• On a desktop

module load intel mpich
mpicc –axCORE-AVX512,CORE-AVX2,AVX program.c –o program.exe
mpirun –np 4 ./program.exe

• On a cluster
srun –N 2 –n 24 ...
module load intel mvapich2
mpirun –np $SLURM_NTASKS ./program.exe

• https://www.chpc.utah.edu/documentation/software/single-
executable.php

15-Mar-22 Slide 47https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Interactive batch – use reasonable time limits, mostly used for debugging
Batch – production runs – check the right syntax on SP and IB

Summary

• Shared vs. Distributed memory parallelism
• OpenMP, OpenACC and MPI for low level

parallelism
• Different approaches for higher level

languages
• Many ways to run independent calculations

in parallel
• There are tools for debugging, profiling

15-Mar-22 Slide 48https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Difference between Sh and Dist M – shared – all processes have access to whole memory on the computer
Dist – local machines – process accesses only local memory – must communicate via network to exchange info
OpenMP – for shared M. (although efforts to put also on dist. m.) Main advantage – simple, but not as flexible
MPI – distributed mem. – processes communicate by passing messages

To learn more
• CHPC lectures

– https://www.chpc.utah.edu/presentations/index.php
• XSEDE HPC Summer Boot Camp

– OpenMP, OpenACC, MPI
– https://www.youtube.com/XSEDETraining

• Petascale Computing Institute
– Wide range of parallel programming topics
– videos at https://bluewaters.ncsa.illinois.edu/bw-

petascale-computing-2019/agenda
• XSEDE online training

– https://www.xsede.org/web/xup/online-training

15-Mar-22 Slide 49https://git.io/CHPC-Intro-to-Parallel-Computing

Presenter Notes
Presentation Notes
Some useful references:
MPI – MPI project main web site – links from here to manuals, tutorials,…
Books – many, but those two are quite good and explanatory
OpenMP – OMP project website
Book – just published – good overview
And our website contains info on the systems, software on CHPC

https://www.chpc.utah.edu/presentations/index.php
https://www.youtube.com/XSEDETraining
https://bluewaters.ncsa.illinois.edu/bw-petascale-computing-2019/agenda
https://www.xsede.org/web/xup/online-training

	Introduction to Parallel Computing
	Overview
	How to compute faster
	Computer architectures
	Shared memory
	Distributed memory
	Ways of program execution
	Parallel programming options
	Parallel programming options hierarchy
	Mapping programming options to the hardware
	OpenMP basics
	OpenACC Basics
	MPI Basics
	Program example
	OpenMP program� example
	OpenMP caveats
	OpenACC program� example
	OpenACC caveats
	MPI program example
	MPI program example
	MPI program example
	MPI caveats
	MPI distributions
	Hands on
	But wait, my program is not in C or Fortran
	Cluster running options for Matlab, Python, R
	Matlab
	Matlab tasks
	Matlab examples
	Matlab hands on
	R
	Parallel R on a cluster
	R examples
	Python
	Python - Jupyter
	Python tasks
	Python- Dask
	Python- Dask
	Independent calculations
	Variable runtime
	Debuggers
	Debuggers - parallel
	Debuggers – parallel
	Profilers
	Profilers - parallel
	Libraries
	Single executable across desktops and clusters
	Summary
	To learn more

