

loh-

Center

CF.B. 28TH

Martin Čuma Center for High Performance Computing University of Utah m.cuma@utah.edu

15-Mar-22

https://git.io/CHPC-Intro-to-Parallel-Computing

TOGETHER WE REACH

B. 28TH

• Parallel programming options.

Overview

- OpenMP, OpenACC, MPI
- Higher level languages
- Debugging, profiling and libraries
- Summary, further learning.

How to compute OF UTAH[™] How to compute faster for High-Performance Computing

- Faster CPU clock speed
 - Higher voltage = more heat not sustainable
- Work distribution
 - Vectorization process more than one value at a time
 - Parallelization spread work over multiple processing elements
 - Specialization application specific processors (ASIC), programmable logic (FPGA)

UNIVERSITY Computer architectures

TOGETHER WE REACH

Single processor:

- SISD single instruction single data.
 Multiple processors:
- **SIMD** single instruction multiple data.
- MIMD multiple instruction multiple data.
 - Shared Memory
 - Distributed Memory
- Current processors combine SIMD and MIMD
 - Multi-core CPUs w/ SIMD instructions (AVX, SSE)
 - GPUs with many cores and SIMT

UNIVERSITY Shared memory

TOGETHER WE REACH

Center for High-Performance Computing

- All processors have
 access to local memory
- Simpler programming
- Concurrent memory
 access
- More specialized hardware
- Representatives:
 - Linux clusters nodes 12-128 cores
 - GPU nodes

Dual quad-core node

Many-CPU node (e.g. SGI)

15-Mar-22

Slide 6

- Process has access only to its local memory
- Data between processes must be communicated
- More complex programming
- Cheap commodity hardware
- Representatives: Linux clusters

TOGETHER WE REACH

Center

for High-

rmance

THE Distributed memory UNIVERSITY OF UTAH™

Ways of program execution

• Process (task)

Entity that executes a program – has its own memory space, execution sequence, is independent from other processes

• Thread

Has own execution sequence but shares memory space with the original process - a process may have many threads

TOGETHER WE REACH

Center

iance

Parallel programming options

Shared Memory

- Threads
 - POSIX Pthreads, OpenMP (CPU, MIC), OpenACC, CUDA (GPU)
- Processes
 - message passing, independent processes

Distributed Memory

- Independent processes
- Message passing libraries
 - General MPI, PVM, language extensions (Co-array Fortran, UPC. ...)

Higher level programming languages (Python, R, Matlab) do a combination of these approaches under the hood.

TOGETHER WE REACH

Center

TOGETHER WE REACH Parallel programming THE Center UNIVERSITY options hierarchy OF UTAH™

- Instruction level (ILP)
 - Instruction pipelining, speculative execution, branch prediction, ...
- Vector (SIMD)
- Multi-core/Multi-socket SMP
- Accelerators (GPU, MIC)
- FPGA, ASIC
- Distributed clusters

nance

THE
UNIVERSITY
OF UTAH™Mapping programming
options to the hardwareTOGETHER WE REACHImage: Content of the bardwareImage: Content of the bardwareImage: Content of the bardware

Compute cluster

THE UNIVERSITY OF UTAH™

- Fortran source code comments
 !\$omp parallel/!\$omp end parallel
- C/C++ #pragmas
 #pragma omp parallel
- Small set of subroutines
- Degree of parallelism specification
- OMP_NUM_THREADS or omp_set_num_threads(INTEGER n)

TOGETHER WE REACH

THE UNIVERSITY OF UTAH™

TOGETHER WE REACH

- Compiler directives to offload to GPU
- Fortran source code comments
 !\$acc kernels/!\$acc end kernels
- C/C++ #pragmas
 #pragma acc kernels
- Small set of subroutines
- Data movement and locality directives

Center

MPI Basics

- Communication library
- Language bindings:
- C/C++ int MPI_Init(int argv, char* argc[])
- Fortran MPI_Init (INTEGER ierr)
- Quite complex (100+ subroutines) but only small number used frequently
- User defined parallel distribution

UNIVERSITY Program example

- saxpy vector addition: Z = ax + y
- simple loop, no cross-dependence, easy to parallelize

```
subroutine saxpy_serial(z, a, x, y, n)
integer i, n
real z(n), a, x(n), y(n)
```

```
do i=1, n
    z(i) = a*x(i) + y(i)
enddo
return
```


OpenMP caveats

- Data dependencies
 - Private (thread-local) variables
 - Flow dependence rearrangement a(i) = a(i+1) + x
 - Reduction (sum over threads)
- Scheduling
 - What runs on what thread schedule, task,...
- Advanced features
 - Thread affinity (to CPU core)
 - Vectorization
 - Accelerator offload

Center

OpenACC caveats

- Data dependencies (Like in OpenMP)
- Data locality
 - Transfers from host to GPU and back take time
 need to minimize them

#pragma acc data [copyin, copyout, create,...]

- Parallel regions
 - More explicit execution control (warps, threads) #pragma acc parallel
- Procedure calls
 - If procedure is executed on the GPU #pragma acc routine

15-Mar-22

THE

<u>Universit</u>

OF UTAH™

https://git.io/CHPC-Intro-to-Parallel-Computing

Slide 20

nance

15-Mar-22

https://git.io/CHPC-Intro-to-Parallel-Computing

MPI caveats

- Explicit task based parallelism
 - manual work distribution
 - task communication and synchronization
- Communication patterns

 due to different data distribution
- Many advanced features
 - blocking vs. non-blocking communication
 - derived data types
 - topologies

broadcast reduction gather/scatter ...

Center

MPI distributions

- Different networks
 - Ethernet
 - InfiniBand
 - Intel OmniPath
 - most MPI distributions now come with multiple networks support
- Several distributions follow the MPI standard
 - MPICH, MVAPICH2
 - Intel MPI, Cray MPI,...
 - OpenMPI
 - Ensure that build and run is done with the same distribution (ABI compatibility)

Hands on

- Log into to ondemand.chpc.utah.edu
- Go to Jobs Job Composer
- Click on Templates
- Show 50 entries
- Choose and run the following jobs:
 - Simple OpenMP job
 - Simple MPI job
 - Modify the *.sh SLURM job script
 - In both cases, use *notchpeak-shared-short* as the account and partition and *notchpeak* as a cluster
- Bonus run Simple hybrid MPI and OpenMP Job

Interpreted languages are popular

• Matlab, Python, R

Each has some sort of parallel support, but most likely it will not perform as well as using OpenMP or MPI with C/Fortran.

Try to parallelize (and optimize) your Matlab/Python/R code and if it's still not enough consider rewriting in C++ or Fortran.

THE UNIVERSITY OF UTAH[™] Cluster running options for Matlab, Python, R

- Using parallelization in the program run through interactive or batch job
 - multi-threading and/or multi-processing packages (parfor, mpi4py, R parallel, Rmpi, ...)
- Using built in job submission
 - Matlab Parallel Server, rslurm, python Dask, snakemake
- Independent calculations in parallel
 - launching concurrent calculations in a job

ance

Center

Threads

 Built in Matlab functions. Vector/matrix operations threaded (and vectorized) through Intel MKL library, many other functions also threaded

Matlab

B. 28TH

Tasks (processes)

- Parallel Computing Toolbox allows for task based
 parallelism
- Parallel Server can distribute tasks to multiple nodes
- Great for independent calculations, when communication is needed uses MPI under the hood

https://www.chpc.utah.edu/documentation/software/matlab. php

Matlab tasks

 Parallel program function t = parallel example Will launch loop iterations on parfor idx = 1:16 ← multiple workers A(idx) = idx;end

 Parallel worker pool on a single machine poolobj=parpool('local', 8); Starts multiple workers pool parallel example; delete(poolobj);

Parallel pool on a cluster

```
c = parcluster;
c.AdditionalProperties.QueueName = 'kingspeak';
```

```
j = c.batch(@parallel_example, 1, {}, 'Pool', 4);
j.State
```

```
Submits cluster job
```

```
j.fetchOutputs{:}
```


Matlab examples

- Parallel worker pool on a single node
 - best run from a SLURM job
 <u>loop parallel onenode.m</u>, <u>run matlab onenode.m</u>, <u>run matlab onenode.slr</u>
 - <u>https://git.io/CHPC-Intro-to-Parallel-Computing-Matlab</u>
 - sbatch run_matlab_onenode.slr
- Parallel worker pool on a multiple nodes
 - must run from inside of Matlab
 - start Matlab on interactive node inside of a FastX session

```
ml matlab
```

```
matlab &
```

```
- <u>loop parallel.m</u>, <u>parallel multinode.m</u>
parallel_multinode
```


Matlab hands on

- In OnDemand open a terminal (Clusters Notchpeak)
- Git clone the repository

git clone <u>https://github.com/CHPC-UofU/CHPC-presentations.git</u> cd CHPC-presentations/Intro-to-Parallel-Computing/Matlab-examples/

- Either submit the serial job from terminal, or via OnDemand
- For the parallel jobs, open Interactive Apps Matlab and run through this Matlab

Threads

- Under the hood threading with specially built (or Microsoft) R for vector/matrix operations using MKL
- parallel R library

Tasks (processes)

 parallel R library (uses multicore for shared and snow for distributed parallelism)

R

EB. 28Th

- Parallelized *apply functions, e.g. mclapply
- *Rmpi* library provides MPI like functionality
- Many people run multiple independent R instances in parallel

https://www.chpc.utah.edu/documentation/software/rlanguage.php

TOGETHER WE REACH

Center

TOGETHER WE REACH

Parallel R on a cluster

Load libraries

library(parallel) library(foreach) library(doParallel)

hostlist.txt comes from a job script
srun -n \$SLURM_NTASKS hostname > hostlist.txt

• Start R cluster

```
hostlist <- paste(unlist(read.delim(file="hostlist.txt",
header=F, sep =" ")))
```

cl <- makeCluster(hostlist)</pre>

registerDoParallel(cl)

clusterEvalQ(cl,.libPaths("/uufs/chpc.utah.edu/sys/installdir/ RLibs/3.5.2i")) this is only needed if running on multiple nodes

Run parallel loop

r <- foreach(icount(trials), .combine=rbind) %dopar% {}</pre>

Stop R cluster

stopCluster(cl)

15-Mar-22

https://git.io/CHPC-Intro-to-Parallel-Computing

R examples

- Parallel R on one node
 - best run from a SLURM job
 <u>parallel-onenode-iris.R</u>, <u>R-parallel-onenode-iris.slr</u>
 - <u>https://git.io/CHPC-Intro-to-Parallel-Computing-R</u>
 - sbatch R-parallel-onenode-iris.slr
- Parallel R multiple nodes
 - must specify list of nodes where R workers run parallel-multinode-iris.R, <u>R-parallel-multinode-iris.slr</u>-
 - sbatch R-parallel-onenode-iris.slr
- Submit SLURM job directly from R rslurm
 - SLURM-aware apply function, some issues with results collection
 - rslurm-example.R

Center

Threads

 No threads in Python code because of GIL (Global Intepreter Lock)

Python

- C/Fortran functions can be threaded (e.g. NumPy -Anaconda)
- Tasks (processes)
- Several libraries that use MPI under the hood, most popular is *mpi4py*
- More-less MPI function compatibility, but slower communication because of the extra overhead
- Also many other data-parallel libraries, e.g. Dask

https://www.chpc.utah.edu/documentation/software/python. php

TOGETHER WE REACH

Center

for High-

rmance

THE UNIVERSITY OF UTAH™

Python - Jupyter

- Several options
 listed at
 <u>https://www.chpc.utah.</u>
 <u>edu/documentation/soft</u>
 <u>ware/jupyterhub.php</u>
- The easiest is to use Open
 OnDemand

6	Jupyter Notebook on Notchpeak - Mozilla Firefox		≙ _	
Jupyter Notebook on Notchp × +				
	ps://ondemand.chpc.utah.edu/pun/sys/da: … 🛡 🏠 🔍 Search	± III\	»	≡
Interactive Apps Desktops P Ash Desktop Ember Desktop Kingspeak Desktop Lonepeak Desktop Notchpeak Desktop Scrubpeak Desktop	Jupyter Notebook on Notchpeak version: d9913a5 This app will launch a Jupyter Notebook server using Python on the Notchpeak cluster. To start the job promptly, use notchpeak-shared account and partition. GPU specification is optional for the partitions that have them. Environment Setup (drag text area to enlarge) module use \$HOME/MyModules			
Tangent Desktop	module load miniconda3/latest			
GUIs S ANSYS Workbench on Lonepeak S ANSYS Workbench on Notchpeak	Enter commands (module load, source activate, etc) to create your desired jupyter notebook environment; jupyter MUST be on your path. If you don't have one yet use 'module load python/3.5.2 R/3.4.2'			
 COMSOL Multiphysics on Notchpeak 				
▲ MATLAB on Notchpeak Servers	Maximum number of CPU cores on notchpeak-shared-short is 32. Number of hours			
	4			
 RStudio server on Notchpeak 	Maximum wall time on notchpeak-shared-short is 8 hours, otherwise 72 hours.			
	Account			
	notchpeak-shared-short			
	Partition			
	notchpeak-shared-short			

https://git.io/CHPC-Intro-to-Parallel-Computing

Python tasks

- Our personal favorite is to ignore all the Python parallel efforts, divide the data into independent parts and run multiple Python processes on parts of the data concurrently
- Only works if data can be split
- Use various approaches for independent parallel calculations listed at <u>https://www.chpc.utah.edu/documentation/software/seria</u> <u>l-jobs.php</u>
- More on this later

Python- Dask

- With relatively small effort one can use Dask
- Install Miniconda

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linuxx86_64.sh

bash ./Miniconda3-latest-Linux-x86_64.sh -b -p

\$HOME/software/pkg/miniconda3

mkdir -p \$HOME/MyModules/miniconda3

ср

/uufs/chpc.utah.edu/sys/installdir/python/modules/miniconda3/latest.lua
\$HOME/MyModules/miniconda3

Use own miniconda and install Jupyter and Dask

module use \$HOME/MyModules

module load miniconda3/latest

conda install jupyter dask "notebook>=6.0"

Start Open OnDemand Jupyter notebook

log into ondemand.chpc.utah.edu with CHPC credentials

Python- Dask

TOGETHER WE REACH

- Go to Interactive Apps Jupyter Notebook on notchpeak
- In the Environment Setup text box, put (my Miniconda3): module use /uufs/chpc.utah.edu/common/home/u0101881/MyModules module load miniconda3/dask
- Use notchpeak-shared-short for account and partition, and select your choice of CPU cores and walltime hours (within the listed limits). Then hit Launch to submit the job.
- Once the job starts, hit the blue Connect to Jupyter button
- Open one of the following notebooks: <u>dask_embarrass.ipynb</u>, <u>dask_slurmcluster.ipynb</u>, <u>dask_slurm_xarray.ipynb</u>
- DASK also allows to submit jobs to SLURM (last 2 examples)

ance

for High-

UNIVERSITYIndependent calculations

- Different approaches based on the nature of the calculations
 - Runtime length, variability, number of calculations
- Similar runtime, small calculation count
 - Shell script in a SLURM job
 #!/bin/bash
 for ((i=0; i < \$SLURM_NTASKS ; i++)); do
 /path_to/myprogram \$i &
 done
 wait</pre>
 - srun -multi-prog

srun --multi-prog my.conf
cat my.conf
0-11 ./example.sh %t

https://www.chpc.utah.edu/documentation/software/serialjobs.php

15-Mar-22

Variable runtime

- Mini-scheduler inside of a job
 - to launch calculations till all are done
 - GNU Parallel https://www.gnu.org/software/parallel/
 - TACC Launcher <u>https://www.tacc.utexas.edu/research-</u> <u>development/tacc-software/the-launcher</u>
 - CHPC Submit -<u>https://www.chpc.utah.edu/documentation/software/serial-jobs.php#submit</u>
- Workflow managers
 - Makeflow, Swift, Snakemake, Pegasus
- Distributed computing resources
 - Open Science Grid <u>https://opensciencegrid.org/</u>

UNIVERSITY OF UTAH[™]

Debuggers

TOGETHER WE REACH

- Useful for finding bugs in programs
- Several free
 - gdb GNU, text based, limited parallel
 - ddd graphical frontend for gdb
- Commercial that come with compilers
 - pgdbg PGI, graphical, parallel but not intuitive
 - pathdb, idb Pathscale, Intel, text based
- Specialized commercial
 - totalview graphical, parallel, CHPC has a license
 - ddt Distributed Debugging Tool
 - Intel Inspector memory and threading error checker
- How to use:
- http://www.chpc.utah.edu/docs/manuals/software/par_ devel.html

UNIVERSITY Debuggers - parallel

- Center for High-Performant Computing
- Parallel debugging more complex due to interaction between processes
- DDT is the debugger of choice at CHPC
- Expensive but academia get discount
- How to run it:
 - compile with -g flag
 - run ddt command
 - fill in information about executable, parallelism, ...
- Details:

https://www.chpc.utah.edu/documentation/software/debugging
.php

Further information

https://www.allinea.com/products/ddt

TOGETHER WE REACH

UNIVERSITY Debuggers – parallel

Session Control Search View Help		
	1 n + 🕾 + 🛋	
	Group O Process O Thread Step Threads Together	
	4 5 6 7	_
Create Group		
	🛛 🕱 🔲 watchmatrix.c 🗙 💿 DDT - Edit Vispoint	
	S 35 A[i][j] Location:	0 8
Project Files	36 for (i = 0; i < -	
Bource Tree		
• • • Header Files • • Source Files	40 for (j = 0;	
	● <u>41 C[i][j]</u> ○ <u>F</u> unction	
	43 for $(i = 0 ; i < for (j = 0 ; i < for (j = 0 ;))$	
	45 for (k = 46 C[i] Mesh Type: Rectilinear ♦ Variable Centering: Zone ♦	
	47 48 Array Expression: C[si][si]	
<	A mental second se	
Input/O Break Watch Stacks Tr Visualization Points	C □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	0 X
Processes Threads File Line		
All all watchmatrix.c		
-	Cycle x248 Time:268	
	Display: YAxis ↓ Display: XAxis ↓	
	23 ever 💺	
1 .		
2		
	user/lived surface 18 to 2009 2011	
	Ready Vis	slt 🔌 🏑

https://git.io/CHPC-Intro-to-Parallel-Computing

UNIVERSITY Profilers

- Measure performance of the code
- Serial profiling
 - discover inefficient programming
 - computer architecture slowdowns
 - compiler optimizations evaluation
 - gprof, pgprof, pathopt2, Intel tools
- Parallel profiling
 - target is inefficient communication
 - Intel Trace Collector and Analyzer, Advisor, VTune

TOGETHER WE REACH

Center,

B. 28Th

UNIVERSITY Profilers - parallel

iew Charts Navigat	e Advanced Layout					
			5-2			1
👸 🖽 🛃 0.058 7	48 - 0.060 553 : 0.001 805	Seconds 🔹 🎽 🗚	I_Processes 🛛 💆 MPI exp	panded in (Major Function Groups) 😥 🍸 🔀 🚺	1
	-					
	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O		A Destruction of the later			
						-
Application	Application		Application	MPI_Allreduce	Application	
Application	Application	1	PMPIApplication	MPI_Allreduce	Application	
2 Application	PI SApplication		Application	MPT Allreduce	Application	
					Application	
(
Flat Profile Load Ba	alance Call Tree	Call Graph	a 🔼 🔤 🔤	Total Time [s] (Sender by	Receiver)	
	alance Call Tree	Call Graph Show Pies]			
hildren of All_Processes	TSelf TSelf	Show Pies	PC P1 P2 P3 P	4 P5 P6 P7 P8 P5 11 1. 1. 1. 1	l 1: ur et ID 🔷	180e-
hildren of Al_Processes	TSelf TSelf n 20.8086e-3 s	Show Pies TTotal 28.707(]		1 ur ex ID	180e- 122e-
hildren of All_Processes Name Group Application MPI_Sendrecv	▼ TSelf TSelf n 20.8086e-3 s 4.652e-3 s	Show Pies TTotal 28.707(4.65)	PC P1 P2 P3 P		• 1! ur ex ID •	
hildren of Al_Processes Name Group Application MPI_Sendrecv Process 0	 TSelf 	Show Pies TTotal 28.707(4.65) 58	PC P1 P2 P3 P P0 P1 P2 P3		1: ur ex ID	132e- 184e-
hildren of Al_Processes Vame Group Application MPI_Sendrecv Process 0 Process 1	TSelf TSelf n 20.8086e-3 s 4.652e-3 s 58e-6 s 90e-6 s	Show Pies TTotal 28.707(4.65) 58 9(PC P1 P2 P3 P P0 P1 P2 P3 P4		• 1! ur ex ID 0 	192e- 184e- 196e-
hildren of Al_Processes Vame Group Application MPI_Sendrecv Process 0 Process 1 Process 2	TSelf TSelf n 20.8086e-3 s 4.652e-3 s 58e-6 s 90e-6 s 99e-6 s	Show Pies TTotal 28.707(4.65) 58 9(91	PC P1 P2 P3 P P0 P1 P2 P3 P4 P5		• 1! ur ex ID 0 	132e- 184e-
hildren of Al_Processes Group Application MPI_Sendrecv Process 0 Process 1 Process 2 Process 3	TSelf TSelf n 20.8086e-3 s 4.652e-3 s 58e-6 s 90e-6 s 99e-6 s 127e-6 s	Show Pies TTotal 28.707(4.65) 58 9(9) 12	PC P1 P2 P3 P P0 P1 P2 P3 P P1 P P2 P3 P4 P5 P6		1: ur ex ID	192e- 184e- 196e-
hildren of Al_Processes	▼ TSelf TSelf n 20.8086e-3 s 4.652e-3 s 58e-6 s 90e-6 s 99e-6 s 127e-6 s 210e-6 s	Show Pies TTotal 28.707(4.65) 51 9(9) 12' 21(PC P1 P2 P3 P P0 P1 P2 P3 P P1 P2 P3 P P2 P1 P2 P3 P P2 P1 P2 P3 P P3 P1 P2 P3 P P3 P1 P3 P P4 P1 P3 P P6 P1 P7 P		1! ur et ID	132e- 184e- 136e- 288e- 240e-
Ame Group Application MPI_Sendrecv Process 0 Process 1 Process 2 Process 3 Process 4	TSelf TSelf n 20.8086e-3 s 4.652e-3 s 58e-6 s 90e-6 s 99e-6 s 127e-6 s	Show Pies TTotal 28.707(4.65) 58 9(9) 12	PC P1 P2 P3 P P0		1: ur ex ID 0 	122e- 184e- 136e- 288e- 240e- 192e-
hildren of Al_Processes	TSelf TSelf n 20.8086e-3 s 4.652e-3 s 58e-6 s 90e-6 s 99e-6 s 127e-6 s 210e-6 s 226e-6 s	Show Pies TTotal 28.707(4.65) 58 9(9) 12' 21(22)	PC P1 P2 P3 P P0		1: ur ex ID 0 	132e- 184e- 136e- 288e- 240e-
hildren of Al_Processes Jame Group Application MPI_Sendrecv Process 0 Process 1 Process 2 Process 3 Process 4 Process 5 Process 6	▼ TSelf TSelf n 20.8086e-3 s 4.652e-3 s 58e-6 s 90e-6 s 99e-6 s 127e-6 s 210e-6 s 226e-6 s 273e-6 s	Show Pies TTotal 28.7074 4.652 58 99 92 127 21(224 273	PC P1 P2 P3 P P0 P1 P2 P3 P P1 P2 P3 P P3 P3 P3 P3		1: ur ex ID 0 	122e- 184e- 136e- 288e- 240e- 192e-

TOGETHER WE REACH

center for High-

Computing

Performance

Center

B. 28TH

UNIVERSITY Libraries

- Use libraries for common operations
- Serial
 - BLAS, LAPACK linear algebra routines
 - MKL, ACML hardware vendor libraries
- Parallel
 - ScaLAPACK, PETSc, FFTW
 - MKL dense and sparse matrices
- Design a new code around existing library
 PETSc, Trilinos,...

Single executable across UNIVERSITY OF UTAH[™] desktops and clusters

- MPICH, MVAPICH2 and Intel MPI are cross-compatible using the same ABI
 - Can e.g. compile with MPICH on a desktop, and then run on the cluster using MVAPICH2 and InfiniBand
- Intel and PGI compilers allow to build "unified binary" with optimizations for different CPU platforms
 - But in reality it only works well under Intel compilers
- On a desktop

THE

```
module load intel mpich
mpicc -axCORE-AVX512,CORE-AVX2,AVX program.c -o program.exe
mpirun -np 4 ./program.exe
```

On a cluster

```
srun -N 2 -n 24 ...
module load intel mvapich2
mpirun -np $SLURM NTASKS ./program.exe
```

https://www.chpc.utah.edu/documentation/software/singleexecutable.php

Center

B. 28TH

Shared vs. Distributed memory parallelism

Summary

- OpenMP, OpenACC and MPI for low level parallelism
- Different approaches for higher level languages
- Many ways to run independent calculations in parallel
- There are tools for debugging, profiling

Center

iance

OF UTAH^T To learn more

- CHPC lectures
 - <u>https://www.chpc.utah.edu/presentations/index.php</u>
- XSEDE HPC Summer Boot Camp
 - OpenMP, OpenACC, MPI
 - https://www.youtube.com/XSEDETraining
- Petascale Computing Institute
 - Wide range of parallel programming topics
 - videos at <u>https://bluewaters.ncsa.illinois.edu/bw-</u> petascale-computing-2019/agenda
- XSEDE online training
 - <u>https://www.xsede.org/web/xup/online-training</u>