TOGETHER WE REACH

THE
u UNIVERSITY \ " High-
OF UTAH™ - Performance

Hybrid MPI/OpenMP
programming

TOGETHER WE REACH
THE

UNIVERSITY

OF UTAH" - NPk mants

Computing

» Single and multilevel parallelism.
« Example of MPI-OpenMP buildup.
« Compilation and running.

» Performance suggestions.

* Code examples.

Presenter
Presentation Notes
no comment
how to start writing the MPI code, initialization, environment
PTP comm – involves just 2 processes, sender, receiver, data types, types of communication
involves more processes, different types
to communicate data more efficiently
just give an idea what else is in MPI

TOGETHER WE REACH
THE

UNIVERSITY

OF UTAH™ T\

Computing

« Shared memory computers

= N processors, single system image

» thread-based parallelism - OpenMP, shmem
* message-based parallelism - MPI

* Distributed memory computers

= nodes with local memory, coupled via
network

* message-based parallelism — MPI

= partitioned global space — UPC, Coarray
Fortran

Presenter
Presentation Notes
no idea on what’s going on on the other process
Programmer must be aware of this and design the program to send the needed data from one process to another
Advantage – just a simple SISD machine connected by a network – cheap. More expensive alternatives speed up the node network connection – faster switches, different network protocols, …
Linux cluster – the cheapest supercomputer. SP – more specialized

TOGETHER WE REACH

THE
U UNIVERSITY : " r'g .
OF UTAH™ : E?..ri?ifflance

Memory Memory Memory Memory

CPU| |CPU| |CPU| |CPU||CPU||CPU||CPU]||CPU
— = — = — = — =

NETWORK

 Each node has N processors that share
memory

* Nodes loosely connected (network)

e CHPC:
= 12,16, 20, 24, 28, 32, 64 core cluster nodes

TOGETHER WE REACH
THE

UNIVERSITY

OF UTAH™ "\ PR Y

Computing

* Coarse and fine grain level

= coarse — nodes, processors (sockets)
fine — CPU cores

= MPI - nodes, CPU sockets
OpenMP, pthreads, shmem — CPU cores

= OpenMP works best with processing intensive loops

« Multilevel advantages

= memory limitations — extra memory for each copy of
executable on the node

= process vs. thread overhead
" message overhead
= portability, ease to maintain (can disable OpenMP)

TOGETHER WE REACH
THE

UNIVERSITY

OF UTAH™ "\ PR Y

Computing

 MPI (Message Passing Interface)
» standardized library (not a language)

= collection of processes communicating via
messages

= gvailable for most architectures
= http://www.mpi-forum.org/

 OpenMP
= API for shared memory programming

= available on most architectures as a compiler
extension (C/C++, Fortran)

= Includes compiler directives, library routines and
environment variables

" www.openmp.org

Presenter
Presentation Notes
standard – will run on almost anything, wide variety of software that uses it is available
Uapi = function calls, variables have similar syntax
GB – will perform that particular operation
Port. – will compile on different platforms
OPERATIONS
…

http://www.mpi-forum.org/
http://www.openmp.org/

THE

UNIVERSITY
OF UTAH™

TOGETHER WE REACH

Performance
Computing

Process
have own address space
can have multiple threads

MPI

Many processes

shared-nothing
architecture

explicit messaging
iImplicit synchronization
all or nothing
parallelization

Thread

executes within process
same address space
share process’ s stack
thread specific data

OpenMP

1 process, many threads

shared-everything
architecture

iImplicit messaging
explicit synchronization
Incremental parallelism

TOGETHER WE REACH

THE
U UNIVERSITY : or er'g .
OF UTAH™ _ " Performance

‘ Computing

 Calculation of value of 11 using integral:

X2+1 4
 trapezoidal rule

* simple loop easy to parallelize both with
MP| and OpenMP

jdx T

0

TOGETHER WE REACH
THE

UNIVERSITY T - Neriioh

OF UTAH™ _ " Performance

| Computing

#include <stdio.h>

#include <math.h>

#include "timer.h"

int main(int argc, char *argvl[]) {

const int N = 10000000000;

const double h = 1.0/N;

const double PI = 3.141592653589793238462643;
double x,sum,pi,error,time; int i;

time = ctimer () ; e User-defined timer
sum = 0.0;
for (i=0;1<=N;i++) {

= e Calculation loo
X h * (double)i; g

sum += 4.0/ (1.0+x*x);}

pi = h*sum;
time += ctimer () ;

error = pi - PI;

error = error<(0 ? —-error:error;

printf ("pi = %$18.16f +/- %18.16f\n",pi,error); e Print out result
printf ("time = %18.16f sec\n",time);

return 0;}

TOGETHER WE REACH
THE

UNIVERSITY T - Neriioh

OF UTAH™ _ " Performance

| Computing

#include <stdio.h>

#include <math.h>

#include "timer.h"

int main(int argc, char *argvl[]) {

const int N = 10000000000;

const double h = 1.0/N;

const double PI = 3.141592653589793238462643;
double x,sum,pi,error,time; int i;

time = -ctimer () ;
sum = 0.0;
#pragma omp parallel for shared(N,h),private (i, x), reduction (+:sum)
for (i=0;1<=N;i++) {

X = h * (double)i;

sum += 4.0/ (1.0+x*x) ;}

e OpenMP directive

pi = h*sum;
time += ctimer () ;

return 0;}

TOGETHER WE REACH
THE

UNIVERSITY :

| Center

for High-

OF UTAH™ _ " Performance

| Computing

#include <stdio.h>

#include <math.h>

#include "timer.h"

int main(int argc, char *argv([]) {

const int N = 10000000000;

const double h = 1.0/N;

const double PI = 3.141592653589793238462643;
double x,sum,pi,error,time,mypi; int i;

int myrank,nproc;

MPI Init (&argc, &argv);
MPI Comm rank (MPI COMM WORLD, &myrank) ;
MPI Comm size (MPI COMM WORLD, &nproc) ;

e MPI initialization

time = -ctimer () ;

sum = 0.0;

for (i=myrank;i<=N;i=i+nproc) { e Distributed loop
x = h * (double)i; OK here, inefficient for vectors
sum = 4.0/ (1. 0=t 7} due to strided memory access

mypl = h*sum;

MPT Reduce (&mypi, &pi,1,MPI DOUBLE,MPI SUM,0,MPI COMM WORLD) ;

time += ctimer () ; e Global reduction

return 0;}

TOGETHER WE REACH

THE

UNIVERSITY o [igh-

OF UTAH™ ’ ‘Performance

Computing

#include <stdio.h>

#include <math.h>

#include "timer.h"

int main(int argc, char *argv[]) {

const int N = 10000000000;

const double h = 1.0/N;

const double PI = 3.141592653589793238462643;
double x,sum,pi,error,time,mypi; int 1i;

int myrank,nproc;

MPI Init (&argc, &argv);
MPI Comm rank (MPI COMM WORLD, &myrank) ;
MPI Comm size (MPI COMM WORLD, &nproc) ;

e OpenMP directive
time = -ctimer(); to parallelize each MPI
sum = 0.0; task loop using threads

#fpragma omp parallel for shared(N,h,myrank,nproc),private (i, x),reduction (+:sum
for (i=myrank;i<=N;i=i+nproc) {

x = h * (double)i;

sum += 4.0/ (1.0+x*x);}

mypl = h*sum;
MPI Reduce (&mypi,spi,1,MPI DOUBLE,MPI SUM,0,MPI coMM WORLD); e Sum MPI task local
ti += cti ;

ime ctimer () values of n

return 0;}

TOGETHER WE REACH
THE

Center

UNIVERSITY U - goh

Performance
Computing

OF UTAH™

= GNU, PGlI, Intel compilers, OpenMP with
—fopenmp, -mp, -gopenmp switch

= MPICH, MVAPICHZ2, OpenMPI or Intel MPI

module load mpich MPICH

module load mvapich2 MVAPICH2
module load openmpi OpenMPI
module load impi Intel MPI

mplcCc —mp=numa SsSource.c -0 program.exe (PGI)

mp1f90 —-fopenmp source.f —-o program.exe (Intel gfortran)
mplifort —gopenmp source.f —-o program.exe (Intel ifort)
mp1f90 —fopenmp source.f -0 program.exe (GNU)

Presenter
Presentation Notes
Very easy to compile – just add –mp switch.
Man contains info on the environmental variables, can also invoke man compiler (e.g. man f77) and read about the –mp flag
If invoke search for OpenMP on the SGI page, will come up with SGI’s manual containing OpenMP references for all supported languages (f77,f90, C, C++)

TOGETHER WE REACH

THE

UNIVERSITY T - Neriioh

OF UTAH™ " A R@nri(t)ignance
« BLASes and FFTW are threaded

* Intel compilers:
—ISFFTW_INCDIR -1fftw3 -1fftw3 omp —L$FFTW_LIBDIR

-W1l, -rpath=$MKLROOT/lib/intel64 -LSMKLROOT/lib/intelé64
—1lmkl intel 1p64 -1mkl intel thread -1lmkl core -liomp5 -lpthread

 PGI compilers:
~ISFFTW INCDIR -1fftw3 -1fftw3 omp -L$SFFTW LIBDIR -lacml mp

« MKL ScaLAPACK w/ Intel

-W1l, -rpath=$MKLROOT/lib/intel64 -LSMKLROOT/lib/intelé64
—-1lmkl scalapack i1lp64 -1mkl intel 1lp64 -1lmkl core
—1lmkl intel thread -1mkl blacs intelmpi ilp64 -liomp5 -lpthread -1m

Presenter
Presentation Notes
Very easy to compile – just add –mp switch.
Man contains info on the environmental variables, can also invoke man compiler (e.g. man f77) and read about the –mp flag
If invoke search for OpenMP on the SGI page, will come up with SGI’s manual containing OpenMP references for all supported languages (f77,f90, C, C++)

TOGETHER WE REACH
THE

UNIVERSITY . Genter

for ngh_
OF UTAH™ » " Performance

| Computing

» Ask for #MPI processes

« Use SLURM environment variables to get OpenMP thread count
 Interactive batch (asking for 2 nodes, 2 tasks/node)

salloc -n 4 -N 2 -t 1:00:00 -p kingspeak —-A chpc .. wait
for prompt ..

set TPN= echo $SLURM TASKS PER NODE | cut -f 1 -d \(°
set PPN='echo $SLURM JOB CPUS PER NODE | cut -f 1 -d \(°
@ THREADS = (S$SPPN / STPN)

mpirun —-genv OMP_NUM_THREADS=$THREADS —np $SLURM_NTASKS
./program.exe

« Non-interactive batch
»= same thing, except in a Slurm script

Presenter
Presentation Notes
Interactive batch – use reasonable time limits, mostly used for debugging
Batch – production runs – check the right syntax on SP and IB

TOGETHER WE REACH
THE
Center

UNIVERSITY U - goh

OF UTAH™ ’ ‘Performance

Computing

« Current NUMA architectures penalize memory access on
neighboring CPU sockets

» Distribute and bind processes to CPU sockets

* Intel compilers can also pin threads to cores
module load intel mvapich?2

mpirun —-genv KMP AFFINITY granularity=fine,compact,1l,0 —-genv
MVZ BINDING POLICY scatter —genv MVZ BINDING LEVEL socket
—genv OMP NUM THREADS 8 -np 4

 Intel MPI binds processes to sockets by default
module load intel impi

mpirun -x KMP AFFINITY granularity=fine,compact,1,0
—genv OMP NUM THREADS 8 -np 4

oruse T MPI PIN DOMAIN=socket

Presenter
Presentation Notes
Interactive batch – use reasonable time limits, mostly used for debugging
Batch – production runs – check the right syntax on SP and IB

TOGETHER WE REACH

THE

UNIVERSITY T - Neriioh

OF UTAH™ » " Performance

Computing

« Default pinning policies for compilers and MPI distributions vary

« See analysis of the situation at https://aci ref.org/how-to-gain-
hybrid-mpi-openmp-code-performance-without-changing-a-line-
of-code-a-k-a-dealing-with-task-affinity/

« Some applications can gain up to 30% performance with pinning
processes AND threads

« Using pinthreads.sh script from the article with common compilers
(Intel, PGI, GNU) and MPIs (MPICH, MVAPICH2, IMPI,
OpenMPI) on a 24 core node, 8 MPI tasks 3 threads each:

mpirun -np 8 —-genv OMP NUM THREADS 3 -bind-to socket -map-by
socket ./pinthreads.sh ./myprogram

« Check the pinning by this bash one-liner:

for i in $(pgrep myprogram); do for tid in $(ps --no-headers -
mo tid -p $i |grep -v -); do taskset -cp "${tid}"; done ;

Presenter
Presentation Notes
Interactive batch – use reasonable time limits, mostly used for debugging
Batch – production runs – check the right syntax on SP and IB

https://aciref.org/how-to-gain-hybrid-mpi-openmp-code-performance-without-changing-a-line-of-code-a-k-a-dealing-with-task-affinity/

TOGETHER WE REACH
THE

UNIVERSITY T - Neriioh

OF UTAH™ » " Performance

Computing

» Parallelize main problem using MPI
= task decomposition
» frequencies in wave solvers

* domain decomposition

= distribute atoms in molecular dynamics
= distribute mesh in ODE/PDE solvers

« EXxploit internal parallelism with OpenMP

= use profiler to find most computationally intense areas
= internal frequency loop in wave solvers
» |ocal force loop in MD
» |ocal element update loop in ODE/PDE solvers

= measure the efficiency to determine optimal number of
threads to use

» Intel Advisor can be heIpfuI (module load advisor)

TOGETHER WE REACH
THE

UNIVERSITY

OF UTAH™ "\ PR Y

Computing

* Not every MPI program will benefit from
adding threads

= not worth with loosely parallel codes (too little
communication)
= overhead with thread creation about 10 flops

= time with different node/thread count to get the best
performing combination

 MPI communication within OpenMP
= can be tricky if each thread communicates

= be aware of thread safety in MP| when using
MPI_THREAD_ MULTIPLE

TOGETHER WE REACH
THE
Center

UNIVERSITY U - goh

Performance
Computing

OF UTAH™

* Defines if it is safe to use program or library with
parallel threads

* Most libraries these days are thread safe

— But it's good to check, usually there is some note in the
documentation or in the build scripts

— Some libraries have threaded and non-threaded versions

* Most often thread safety relates to the concurrent
access of shared data

 MPI defines several threading models, some allow
communication from threads, some don'’t

TOGETHER WE REACH
THE

UNIVERSITY

OF UTAH™ T\

Computing

 MPI_THREAD_SINGLE

= only non-threaded section communicates (default)

« MPI_THREAD_FUNNELLED

= process may be multithreaded but only master thread
communicates

 MPI_THREAD_SERIALIZED

= multiple threads may communicate but only one at
time

« MPI_THREAD_MULTIPLE

= all threads communicate (fully thread safe)

TOGETHER WE REACH
THE

UNIVERSITY Y e ioh

OF UTAH™ .\ Performance

Computing

 Complex norm routine

int main (int argc, char **argv) {

MPI Init (&argc, &argv);

MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &myid) ;

double Complex stabWmnorm(double *Wm, double Complex *stab, int size)
{

double Complex norm, vec, norml;

int 1i;

norml = 0 + I*0;
fpragma omp parallel for private(i,vec) reduction (+:norml) Parallel OpenMP for |00p
for (i=0;i<size;i++)
{
vec = stab[i]*Wm[i];
norml = norml + vec*conj (vec);
}
MPI Allreduce (&norml, &norm,1,MPI DOUBLE COMPLEX,MPI SUM,MPI COMM WORLD) ;

MPI communication outside OpenMP

return sqgrt (norm) ;

}

MPI Finalize();

TOGETHER WE REACH

THE
U UNIVERSITY T - Neriioh
OF UTAH™ ‘-8 Performance

Computing

« Special MPI_Init

= Returns variable thread status which indicates what
level of threading is supported

int thread status;

MPI Init thread(&argc, &argv,MPI THREAD MULTIPLE, &thread status);
if (thread status!=MPI THREAD MULTIPLE)

{
printf ("Failed to initialize MPI THREAD MULTIPLE\n");
exit (-1);

}

MPI Finalize();

TOGETHER WE REACH
THE

UNIVERSITY . Genter

for ngh_
OF UTAH™ Performance

Computing

#pragma omp parallel private(iis,niip,iip,iisf)

{ Start parallel OpenMP section
double Complex *ne, *nh; int comlab, mythread, nthreads;
MPI Status statx[fwdd->Nz];

Data structures for non-blocking
MPI Request regx|[fwdd->Nz];

communication
#ifdef OPENMP

mythread = omp get thread num(); nthreads = omp get num threads() ; Flnd thread # and # Of threads
#endif
ne = (double Complex *)malloc(sizeof (double Complex)*3*Nxy);

Allocate local thread arrays
comlab=mythread*10000; // different tag for each proc/thread

for (iis=mythread; iis < Ncp[0]; iis+=nthreads)

{ Each thread does different iteration of this loop
. calculate pieces of large distributed vector Ebb as a local vector ne
if (cpuinfo[0] == iip) Each communication pair has unique tag
{

MPI Isend(&ne[0], Nxy, MPI DOUBLE COMPLEX, Dp[0], comlab, MPI COMM WORLD, regx[Nreqi[O0]]);
Nregi[0]++; comlab++;

}
else if (cpuinfo[0] == Dp[0])
{
MPI Irecv (&Ebb[ie[0]*Nxy], Nxy, MPI DOUBLE COMPLEX, iip, comlab, MPI COMM WORLD, regx[Nreqi[O0]]);
Nreqgi[0]++; comlab++;
} . . _ . . .
MPT Waitall (Nreqi(0], &reqx(0], &statxz(0]); Finalize non-blocking communication
}

¢ : Free local thread arrays
ree (ne) ; End OpenMP parallel section

TOGETHER WE REACH

THE

UNIVERSITY T - Neriioh

OF UTAH™ Pertformance

Computing

MPI Comm comm thread[NOMPCPUS];

#pragma omp parallel private(iis,niip,iip,iisf) Start parallel OpenMP section
{

double Complex *ne; int mythread, nthreads Local thread variables

#ifdef OPENMP

mythread = omp get thread num(); nthreads = omp get num threads(); Find thread # and # of threads
#endif

ne = (double Complex *)malloc(sizeof (double Complex)*3*Nxy); Allocate |oca| thread arrays

for(ithr=0;ithr<nthreads;ithr++)
{
#pragma omp barrier // synchronize so that each process gets the right thread

if (ithr==mythread) MPI Comm dup (comm domain, &comm thread[mythread]) ; :
} Per thread communicator

for (iis=mythread; iis < Ncp[0]; iis+=nthreads) Each thread does different iteration of this loop
{

. calculate ne ..

MPI Gatherv(&ne[indgbpliic]],Nxy loc,MPI DOUBLE COMPLEX, &Gb[ie[ic]*Nxy2 + 1iit2], Nxy rec,
Nxy disp, MPI DOUBLE COMPLEX, Dp[ic],comm thread[mythread]) ; Thr d mm ni t r
} ead Co unicato

for (ithr=0;ithr<nthreads;ithr++)
{

if (ithr==mythread) MPI Comm free (&comm_ thread[mythread]); Free thread communicators
}
£ : Free local thread arrays
ree (ne) ; .
} End OpenMP parallel section

TOGETHER WE REACH
THE

UNIVERSITY

OF UTAH™ "\ PR Y

Computing

* Mixed MPI-OpenMP has become
commonplace

= reduces memory footprint per core
= petter locality of memory access per core

= faster inter-node communication — larger
messages, smaller overhead

= One sided MPI communication further
Improves parallel efficiency

— TOGETHER WE REACH

THE
U UNIVERSITY
OF UTAH™

» Single and multilevel parallelism
* Simple MPI-OpenMP example

« Compilation, running

» A few advices

http://www.chpc.utah.edu/short courses/mpi omp

Presenter
Presentation Notes
How to start, finalize MPI, find no of processes and my node no., data types
PTP – send/recv, comm. modes (synchr., ready, buffered), non-blocking
broadcast, reduce, gather,…
derived data types, pack/unpack
CHPC webpage address of the talk
and a short but concise reference to the MPI-1 routines

./ TOGETHER WE REACH

THE /
u UNIVERSITY : or er'g .
OF UTAH™ _ " Performance

| Computing

 MPI
http://www.mpi-forum.org/

 OpenMP
http://www.openmp.orqg/

 MPI+OpenMP

Pacheco — Introduction to Parallel Programming

« XSEDE HPC Summer Boot Camp
OpenMP, OpenACC, MPI
https://www.youtube.com/XSEDETraining

Presenter
Presentation Notes
Some useful references:
MPI – MPI project main web site – links from here to manuals, tutorials,…
Books – many, but those two are quite good and explanatory
And our website contains info on the systems, software on CHPC

https://www.youtube.com/XSEDETraining

	Hybrid MPI/OpenMP programming
	Overview
	Single level parallelism
	Shared-Distributed memory
	Multilevel parallelism
	MPI and OpenMP
	Processes vs. threads
	Pi example
	Serial code
	OpenMP code
	MPI code
	MPI-OpenMP code
	Compilation
	Third party libraries
	Running
	Running – process pinning
	Running – process pinning cont’d
	General multilevel approach
	Things to be aware of
	Thread safety
	Four MPI threading models
	Example of single thread communication.
	Multiple threads comm. - initialization
	Multiple threads point-to-point communication
	Multiple threads collective communication
	Future outlook
	Summary
	References

