
Introduction to Linux (Part 3)
-- Shell Scripting

Zhiyu (Drew) Li & Martin Cuma
Research Consulting & Faculty Engagement
Center for High Performance Computing

{zhiyu.li; martin.cuma}@utah.edu

Linux Virtual Machine
q Get a temporary account (or use your own CHPC account)
q Virtual Machine FastX portal: https://linuxclass.chpc.utah.edu:3300
q Open a XFCE Terminal

q Adjust Font size: Edit à Preferences à Appearance à Click on Font à adjust Font Size
q Use Bash shell (quick check: echo $SHELL)
q Copy and Paste issue on Mac

https://linuxclass.chpc.utah.edu:3300/

Getting the exercise files

cd ~
wget https://home.chpc.utah.edu/~u0424091/LinuxScripting2.tar.gz
tar xvfz LinuxScripting2.tar.gz
cdLinuxScripting2

What is a shell script?
• A script is a series of shell commands stored in a file
• A script can be executed in several ways:

– bash scriptname.sh
– ./scriptname.sh (if the script file executable, rwx r-x r-x)
– scriptname.sh (if the script is on your PATH environment

variable)
• commands are separated by:

– new line
– semi colon “;”

• Commands executed sequentially until
– the end of the file has been reached
– an error happens
– the “exit” command is executed

Scenarios for scripting
• Using the batch system at CHPC (discussed in the talk

on Slurm Basics)
• Automating pre- and post- processing of datasets
• Performing lots of menial, soul draining tasks efficiently

and quickly
• Preserve/share operations

Exercise 1: Write a first script
Create a file named my_ex1.sh using nano.
First line always contains ‘#!’ followed by the language interpreter.
(“shebang”)
#!/bin/bash
echo "My first script:"
echo "My userid is:"
whoami
echo "I am in the directory:"
pwd
echo "Today's date:"
date
echo "End of my first script."
Run the script:

bash my_ex1.sh
Or make the script executable first. Run this command:

chmod +x ./my_ex1.sh
Then run your script:

./my_ex1.sh

Script Arguments
Command line arguments to a script are available in the script as
$1, $2, and so on.
For example, if a script is named “myscript.sh” and the script is
executed with “./myscript.sh value1 value2 value3”:
• the variable $1 has the value “value1”
• the variable $2 has the value “value2”
• the variable $3 has the value “value3”
• $0 contains the name of the script
• $# contains the # arguments
• $* contains all arguments

Try it out
1) Create a new script “test_args.sh”
2) chmod+x test_args.sh
3) ./test_args.sha bc

#!/bin/bash
echo "script name: $0"
echo "how many arguments: $#"
echo "list all arguments: $*"
echo "arg1: $1"
echo "arg2: $2"
echo "arg3: $3"
echo "done"

Saving results of a command

• The output of a command can be put directly
into a variable with the backtick: `

• The backtick is not the same asa single quote:
Backtick: ` Single quote: ‘

• For example: (no spaces around = sign)
VAR=`wc - l $FILENAME`

• You can also do t h i s :
VAR=$(wc - l $FILENAME)

String replacement

#!/bin/bash
IN=“myf i le . in ”
#changes my f i l e . i n to myf i le .out
OUT=${IN/.in/.out}
./my_program $IN > $OUT

Aneat trick for changing the name of your output file is to use
string replacement to mangle the filename.

• In bash, ${VAR/search/replace} is all that is
needed.

• Youcan use the sed, awk, or tr commands for more
powerful manipulations.

Exercise 2.0
Write a script (my_ex2.sh) that takes a file name asan
argument, searches that file for exclamation points with grep,
puts all the lines with exclamation points into a new file named
“outfile”, and then counts the number of lines in outfile. Use
“histan-qe.out” as your test file.

Don’t forget #!/bin/bash

Variables - Bashstyle: VAR="string" (no spaces!)

Arguments - $1 $2 $3 . . .

Grep - grep 's t r ing ' filename

Counting Lines - wc –l filename

Solution to Exercise 2.0

#!/bin/bash
INPUT=$1
grep "!" $INPUT > outfile
cat outfile | wc -l

The output from your script should have been “34”.

Script my_ex2.sh

Dates and Times
• Date strings are easy to generate in Linux

– “date” command gives the date,
Fri Sep 8 09:59:02 MDT 2023

but not nicely formatted for filenames
– “date --help” will give format options (use +)

• date +"Today is: %D"
• date +%r

“Today is 05/31/18”
”10:51:17 AM”

• date +%Y-%m-%d_%H-%M-%S_%N
"2014-09-15_17-27-32_864468693"

Exercise 2.1
Modify your previous script so that instead of writing to an
output file with a fixed name, the output filename is derived
from the input file (e.g., ‘XXXX.out” becomes
“XXXX.todays_date”). Don’t forget to copy your script in case
you make a mistake!

Command execution to string - VAR=̀command̀ (use the
backtick)

Bash replacement – ${VAR/search/replace}

Dates - date +%Y-%m-%d_%H-%M-%S_%N (or pick your own
format)

Solution to Exercise 2.1
#!/bin/bash
INPUT=$1
DATE=`date +%Y-%m-%d_%H-%M-%S_%Ǹ
OUT=${INPUT/out/}$DATE
grep "!" $INPUT > $OUT
wc - l $OUT

Every time you run the script, a new unique output file
should have been generated.

Conditionals (If statements)
#!/bin/bash
VAR1="name"
VAR2="notname"
if ["$VAR1" == "$VAR2"]
then

echo "VAR1 and VAR2 have the same value."
else

echo "VAR1 and VAR2 have different values."
fi
if [-d "$VAR1"]
then

echo "$VAR1 is a directory!"
else

echo "$VAR1 is not a directory!"
fi

• The operators ==, !=, &&, | | , <, >and a few others work.
• The “else” clause is optional.
• Youcan test variable values and file properties.
• Seethe manual page with “man test” for all the options.

Conditionals (File properties)
Test bash

Is a directory - d
If file exists - a , - e

Is a regular file (like .txt) - f
Readable - r
Writeable - w

Executable - x
Is owned by user - O

Is owned by group - G
Is a symbolic link - h , - L

If the string given is zero length - z
If the string is length is non-zero - n

-The last two flags are useful for determining if an environment variable exists.
-The rwx flags only apply to the user who is running the test.

Loops (for statements)
#!/bin/bash
f o r i i n 1 2 3 4 5
do

echo $ i
done
f o r i i n * . i n
do

touch $ { i / . i n / . o u t }
done
f o r i i n `ca t f i l e s `
do

grep " s t r i n g " $ i >> l i s t
done

• Loops can be executed in a script --or-- on the command line.
• All loops respond to the wildcard operators *,?,[a-z], and {1,2}
• The output of a command can be used asa for loop input.
• There are also while and until loops.

Exercise 2.2
Run the script called ex2.sh. This will generate a directory "ex2" with 100 directories and
folders with different permissions. Write a script (my_ex22.sh) that examines all the
directories and files in "ex2" using conditionals and for loops. For each iteration of the
loop:
1. Test if the item is a directory. If it is, delete it.
2. If the file is not a directory, check to see if it is executable.

A. If it is, then change the permissions so the file is not executable.
B. If the file is not executable, change it so that it is executable and rename

it so that it has a ".script" extension.
3. After all the files have been modified, execute all the scripts in the directory.

For loops : for VARin *; do ... done

If statements : if [condition]; then ... else ... fiUseful

property flags - -x for executable, -d for directory

-Youcan reset the directory by re-running the script ex2.sh
-Make sure that you do not write your script in the ex2 directory, or it will be deleted!

Solution to Exercise 2.2 (my_ex22.sh)
#!/bin/bash

for i in ex2/*
do

if [-d $i]
then

rm -rf $i
else

if [-x $i]
then

chmod -x $i
else

chmod +x $i
mv $i $i.script

fi
fi

done
for i in ex2/*.script
do

./$i
done

Basic Arithmetic
#!/bin/bash
i n i t i a l i z a t i o n
i=1
#increment
i =$ ((i++))
#add i t ion, subtract ion
i =$ ((i + 2 - 1))
#mu l t i p l i ca t i on , d iv is ion
i =$ ((i * 10 / 3))
#modulus
i =$ ((i % 10))
#not math, echo returns " i+1"
i= i+1

• Bashuses$(()) for arithmetic operations.
• Important! This only works for integer math. If you need more,

use Python, R,etc.

Bash “Strict” Mode
• Somebash settings simplify debugging:
s e t - e # E x i t i m m e d i a t e l y on any command returns errors
s e t - u
s e t –o fail

E r r o r i f r e f e r e n c i n g u n d e f i n e d v a r i a b l e
E r r o r on any p i p e command

Example : t h i s code s h o u l d f a i l :
p a t t e r n = “ s o m e s t r i n g $som e_unde f i ned_va r i ab le ”
g r e p $ p a t t e r n n o n _ e x i s t e n t _ f i l e | wc - l

• Youcando this all at once (put after shebang):
set -euo pipefail

• SeeAaronMaxwell’s blog:
– http://redsymbol.net/articles/unofficial-bash-strict-mode/

• Also helpful is ”bash –x yourscript.sh” or “set –x”: prints
each line before execution

http://redsymbol.net/articles/unofficial-bash-strict-mode/

More on scripting techniques
• Create functions
my_func() {

echo “Today is $1”
}
my_func “Friday”
my_func “a big day!”

• Single quotes ‘ ’ V.S. Double quotes “ ”
MY_VAR=1
echo "The value is $MY_VAR" #Expand variable into value: The value is 1
echo ‘The value is $MY_VAR’ #Preserve literal string: The value is $MY_VAR

• Redirect the standard error
command # Output (stdout) and Error (stderr) printed on Screen
command > out.txt # Save Output to a file; Error printed on Screen
command 2> error.txt # Save Error to a file; Output printed on Screen
command > out.txt 2>error.txt # Save output and Error to different files
command &> logs.txt (or command > logs.txt 2>&1) # Save both to same file

Thank You

helpdesk@chpc.utah.edu

mailto:helpdesk@chpc.utah.edu

