
Introduction to Linux – Part 3

Anita Orendt and Martin Cuma

Center for High Performance Computing

What is a script?

• A script is a collection of linux commands that:
• are stored in a file

• the file MUST be executable

• commands are separated by:
• either being a carriage return (new line)

• or separated by the semi colon (“;”)

• executed sequentially until
• the end of the file has been reached

• or an error is met

Why scripting?

Scripting is a timesaver

The real question: When should you script?

Scenarios for scripting

• Using the batch system at CHPC (discussed

in the talk on Slurm Basics)

• Automating pre- and post- processing of datasets

• Performing lots of menial, soul draining tasks efficiently and quickly
(like building input files)

https://www.chpc.utah.edu/presentations/IntroSlurmAndSlurmBatchScripts.php

How long should you script?

http://xkcd.com/1205/

Task time saver calculator: http://c.albert-thompson.com/xkcd/

http://c.albert-thompson.com/xkcd/

What to script in?

• Basic scripting needs can be done in the bash shell or the tcsh/csh
shell.

• If you have more complicated tasks to perform, then you should
consider something more advanced (like python* or matlab).

• If your workload is computationally heavy, you should be consider to
write your application in a compiled language (e.g. C/C++, Fortran, …).

*CHPC also holds a three part workshop focusing on Python

http://www.python.org/
http://www.mathworks.com/

bash vs tcsh/csh
• A Shell is:

a. user interface to the OS’s services

b. a layer (=> shell) around the kernel

c. programming env.

• CHPC currently supports 2 types of “shell-languages”/shells:

a. B(ourne) Again Shell (bash)

b. Csh/Tcsh shelll

• Syntactic differences are significant (and quirky) => NO MIXING ALLOWED

• Some programs do not support different shells (rather rare)

• Very easy to switch between shells

• What shell do I currently use? echo $SHELL

WHILE LEARNING TO SCRIPT,
PICK ONE AND STICK WITH IT

For this training we will be using bash

Getting the exercise files

• For today’s exercises, open a session and when in your home
directory run:

cp ~u0028729/IntroLinux3.tar

tar -xvf IntroLinux3.tar

cd IntroLinux3/

A comment about running scripts/programs
• Last time we ran script by

• bash scriptname (bash goostats.sh)

• This works if the script is in the current directory and is written in bash syntax

• Can also use first line of script to tell OS what language/interpreter to use on script

• When you execute a command, the shell must first find the program you want to run

• Either:

– if you are in directory can use ./ to tell shell (e.g. “./ex1.sh”)

• Otherwise can provide full path when executing script

• OR put directory where shell is located in the PATH environment variable

– echo $PATH

• “which” command: shows where a command is found

Write a first script (ex1)
• Open a file named ex1.sh using nano

• Note -- ‘#’ character at start of line – indicates line is a comment

• Top line always contains the ‘she-bang’ followed by the language interpreter:

‘#!/bin/bash’ (if script is in bash syntax)

• Put the following content in a file:

echo " My first script:"

echo " My userid is:"

whoami

echo " I am in the directory:"

pwd

echo "Today's date:"

date

echo " End of my first script"

• Make the script executable + execute:

chmod u+x ./ex1.sh

./ex1.sh

Script Arguments (refresher)

• If the script is named “myscript.sh” the script

• is executed with “myscript.sh myarg1 myarg2 ... myargN”

$0 returns the name of the script

$1 returns the first argument

$2 returns the second argument

.

.

$N returns the Nth argument

Using grep and wc (refresher)

• grep searches files for test strings and outputs lines that contain the
string
• VERY fast, very easy way to parse output

• can use regex and file patterns

grep "string" filename

use quotes if any special characters (spaces, @, !)

• wc can count the number of lines in a file

wc -l filename

Command line redirection (refresher)

• You can output to a file using the “>” operator.
cat filename > outputfile

• You can append to the end of a file using “>>”

cat filename >> outputfile

• You can redirect to another program with “|”

cat filename | wc –l

Exercise 2

Write a bash script that takes a file as an argument, searches the file
for exclamation points with grep, puts all the lines with exclamation
points into a new file, and then counts the number of lines in the file.
Use “histan-qe.out” as your test file.

Don’t forget #!/bin/bash

Arguments - $1 $2 $3 ...

Grep - grep 'string' filename

Counting Lines - wc –l filename

Solution to Exercise 2

#!/bin/bash

grep '!' $1 > outfile

wc -l outfile

Run as ./ex2.sh The output from your script should have been “34 outfile”.

Setting and Using Variables

#!/bin/bash

#set a local variable (no spaces around =)

VAR="hello bash!"

#print the variable

echo $VAR

#make it permanent “global”

export VAR2="string"

#print the variable

echo $VAR2

#remove VAR2

unset VAR2

Be careful what you export! Don’t overwrite something important!

Commands to string

• The output of a string can be put directly into a variable with the backtick : `

• The backtick is not the same as a single quote:

` '
• Bash form: VAR=`wc -l $FILENAME`

String replacement

#!/bin/bash

IN=“myfile.in”

#changes myfile.in to myfile.out

OUT=${IN/.in/.out}

echo $IN

echo $OUT

#run program that takes the

./program < $IN > $OUT

A neat trick for changing the name of your output file is to use string replacement to
mangle the filename.

• In bash, ${VAR/search/replace} is all that is needed.

• You can use 'sed' or 'awk' for more powerful manipulations.

Dates and Times

• Date strings are easy to generate in Linux
• “date” command gives the date, but not nicely formatted for filenames

• date --help will give format options (use +)

• A nice formatted string format (ns resolution) – do “man date” to get
explanation of:

date +%Y-%m-%d_%k-%M-%S_%N

"2014-09-15_17-27-32_864468693"

• For a really unique string, you can use the following command to get a more or less unique string
(not recommended for cryptographic purposes)

$(cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 32 | head -n 1)

Exercise 2.1

Modify your previous script so that instead of writing to an output file with a fixed
name, the output filename is derived from the input file (e.g., ‘file.out” becomes
“file.date”). Don’t forget to copy your script in case you make a mistake!

Command execution to string - VAR=`command` (use the backtick)

Bash replacement – ${VAR/search/replace}

Dates - date +%Y-%m-%d_%k-%M-%S_%N (or pick your own format)

Solution to Exercise 2.1
#!/bin/bash

DATE=`date +%Y-%m-%d_%k-%M-%S_%N`

OUT=${1/out/}$DATE

echo $OUT

grep ‘!’ $1 > $OUT

wc –l $OUT

Every time you run the script, a new unique output file
should have been generated.

Conditionals (If statements)

#!/bin/bash

VAR1="name"

VAR2="notname"

if [[$VAR1 == $VAR2]]; then

echo "True"

else

echo "False"

fi

if [[-d $VAR1]]; then

echo "Directory!

fi

• The operators ==, !=, &&, ||, <, > and a few others work.
• You can use if statements to test two strings, or test file

properties.

Conditionals (File properties)

Test bash

Is a directory -d

If file exists -a,-e

Is a regular file (like .txt) -f

Readable -r

Writeable -w

Executable -x

Is owned by user -O

Is owned by group -G

Is a symbolic link -h, -L

If the string given is zero length -z

If the string is length is non-zero -n

-The last two flags are useful for determining if an environment variable exists.
-The rwx flags only apply to the user who is running the test.

Loops (for/do/done statements) - refresh

#!/bin/bash

for i in 1 2 3 4 5; do

echo $i

done

for i in *.in; do

touch ${i/.in/.out}

done

for i in `cat files`; do

grep "string" $i >> list

done

• Loops can be executed in a script --or-- on the command line.
• All loops respond to the wildcard operators *,?,[a-z], and {1,2}
• The output of a command can be used as a for loop input.

Exercise 2.2

Run the script called ex2prep.sh. This will generate a directory "ex2" with 100 directories
and folders with different permissions. Write a script that examines all the directories and
files in "ex2" using conditionals and for loops. For each iteration of the loop:

1. Test if the item is a directory. If it is, delete it.

2. If the file is not a directory, check to see if it is executable.
A. If it is, then change the permissions so the file is not executable.
B. If the file is not executable, change it so that it is executable and rename

it so that it has a ".script" extension.

3. After all the files have been modified, execute all the scripts in the directory.

For loops - Bash : for VAR in *; do ... done

If statements - Bash : if [[condition]]; then ... elif ... else ... fi

Useful property flags - -x for executable, -d for directory

-You can reset the directory by re-running the script ex2.sh

-Make sure that you do not write your script in the ex2 directory, or it will be deleted!

Solution to Exercise 2.2
#!/bin/bash

for i in ex2/*; do

if [[-d $i]]; then

rm -rf $i

else

if [[-x $i]]; then

chmod u-x $i

else

chmod u+x $i

mv $i $i.script

fi

fi

done

for i in ex2/*.script; do

./$i

done

