The CHPC has a new page summarizing machine learning and artifical intelligence resources.
Center for High Performance Computing
Research Computing and Data Support for the University Community
In addition to deploying and operating high-performance computational resources and providing advanced user support and training, CHPC serves as an expert team to broadly support the increasingly diverse research computing and data needs on campus. These needs include support for big data, big data movement, data analytics, security, virtual machines, Windows science application servers, protected environments for data mining and analysis of protected health information, advanced networking, and more.
If you are new to the CHPC, the best place to learn about CHPC resources and policies is our Getting Started page.
Have a question? Please check our Frequently Asked Questions page and contact us if you require assistance or have further questions or concerns.
After nearly four decades of dedicated service at the University of Utah, Julia Harrison is retiring as the Operations Director of the Center for High Performance Computing.
Read moreAnita M. Orendt is a dedicated educator and researcher with a rich background in physical chemistry. Anita has made significant contributions to the academic community at the University of Utah.
Read moreUpcoming Events:
Allocation Requests for Winter 2025 are Due December 1st, 2024
Posted November 4th, 2024
Update to redwood idle session management following August 20, 2024 downtime
Posted September 3rd, 2024
Redwood Cluster Operating System Updated to Rocky Linux 8.10
Posted August 21st, 2024
Allocation Requests for Fall 2024 are Due September 1st, 2024
Posted August 7th, 2024
Allocation Requests for Summer 2024 are Due June 1st, 2024
Posted May 1st, 2024
CHPC Downtime: Tuesday March 5 starting at 7:30am
Posted February 8th, 2024
Two upcoming security related changes
Posted February 6th, 2024
Allocation Requests for Spring 2024 are Due March 1st, 2024
Posted February 1st, 2024
CHPC ANNOUNCEMENT: Change in top level home directory permission settings
Posted December 14th, 2023
CHPC Spring 2024 Presentation Schedule Now Available
CHPC PE DOWNTIME: Partial Protected Environment Downtime -- Oct 24-25, 2023
Posted October 18th, 2023
CHPC INFORMATION: MATLAB and Ansys updates
Posted September 22, 2023
CHPC SECURITY REMINDER
Posted September 8th, 2023
CHPC is reaching out to remind our users of their responsibility to understand what the software being used is doing, especially software that you download, install, or compile yourself. Read More...News History...
Phosphate adsorption by bastnaesite
By Weiping Liu, Xuming Wang, and Jan D. Miller
Department of Metallurgical Engineering, University of Utah
Bastnaesite is a major mineral resource of importance in the production of rare earth materials. Present flotation practice uses a reagent schedule which typically includes fatty acid of hydroxamic acid as collector. Initial evaluation suggests that phosphate collectors should be a promising collector for bastnaesite flotation. In this regard, the adsorption of phosphate collectors by bastnaesite was examined by Molecular Dynamics Simulations. The phosphate collectors were found to be adsorbed at the bastnaesite (100) surface, specifically, with the phosphate groups in preferred positions with respect to cerium atoms in the crystal structure, as shown in (a) and (b). This phenomenon agrees with the thermodynamic analysis and density functional theory calculation results. Furthermore, the 2-Ethylhexyl phosphate is adsorbed on the bastnaesite surface totally by the polar headgroup, while lauryl phosphate is adsorbed on the bastnaesite surface by the combination of headgroup and hydrophobic attraction between adjacent hydrocarbon chains. However, lauryl phosphate excludes more water due to its longer hydrocarbon chain, thereby imparting higher hydrophobicity compared to the case of 2-Ethylhexyl phosphate as shown in (c). It is expected that the results of this research will enable us to further understand the bastnaesite flotation chemistry using phosphate collectors, with consideration of chemical structure, which includes the hydrophobic surface state, selectivity in flotation, and adsorption phenomena for the sign of alkyl phosphate collector.
System Status
General Environment
General Nodes | ||
---|---|---|
system | cores | % util. |
kingspeak | 924/952 | 97.06% |
notchpeak | 3036/3212 | 94.52% |
lonepeak | 1443/1596 | 90.41% |
Owner/Restricted Nodes | ||
system | cores | % util. |
ash | Status Unavailable | |
notchpeak | 14664/22068 | 66.45% |
kingspeak | 5108/5244 | 97.41% |
lonepeak | 16/416 | 3.85% |
Protected Environment
General Nodes | ||
---|---|---|
system | cores | % util. |
redwood | 220/628 | 35.03% |
Owner/Restricted Nodes | ||
system | cores | % util. |
redwood | 1432/6472 | 22.13% |