Skip to content

CHPC - Research Computing and Data Support for the University

In addition to deploying and operating high performance computational resources and providing advanced user support and training, CHPC serves as an expert team to broadly support the increasingly diverse research computing and data needs on campus. These needs include support for big data, big data movement, data analytics, security, virtual machines, Windows science application servers, protected environments for data mining and analysis of protected health information, and advanced networking.

If you are new to CHPC, the best place to start to get more information on CHPC resources and policies is our Getting Started page.

Upcoming Events:

CHPC Downtime: Tuesday March 5 starting at 7:30am

Posted February 8th, 2024


Two upcoming security related changes

Posted February 6th, 2024


Allocation Requests for Spring 2024 are Due March 1st, 2024

Posted February 1st, 2024


CHPC ANNOUNCEMENT: Change in top level home directory permission settings

Posted December 14th, 2023


CHPC Spring 2024 Presentation Schedule Now Available

CHPC PE DOWNTIME: Partial Protected Environment Downtime  -- Oct 24-25, 2023

Posted October 18th, 2023


CHPC INFORMATION: MATLAB and Ansys updates

Posted September 22, 2023


CHPC SECURITY REMINDER

Posted September 8th, 2023

CHPC is reaching out to remind our users of their responsibility to understand what the software being used is doing, especially software that you download, install, or compile yourself. Read More...

News History...

rock pigeon genomics

Improved Genome Assembly and Annotation for the Rock Pigeon (Columba livia)

By Carson Holt, Michael Campbell, David A. Keays, Nathaniel Edelman, Aurélie Kapusta, Emily Maclary, Eric T. Domyan, Alexander Suh, Wesley C. Warren, Mark Yandell, M. Thomas P. Gilbert, and Michael D. Shapiro

 Shapiro Lab, Department of Biology, University of Utah

Intensive selective breeding of the domestic rock pigeon (Columba livia) has resulted in more than 350 breeds that display extreme differences in morphology and behavior (Levi 1986; Domyan and Shapiro 2017). The large phenotypic differences among different breeds make them a useful model for studying the genetic basis of radical phenotypic changes, which are more typically found among different species rather than within a single species.

In genetic and genomic studies of C. livia, linkage analysis is important for identifying genotypes associated with specific phenotypic traits of interest (Domyan and Shapiro 2017); however, short scaffold sizes in the Cliv_1.0 draft reference assembly (Shapiro et al. 2013) hinder computationally-based comparative analyses. Short scaffolds also make it more difficult to identify structural changes, such as large insertions or deletions, that are responsible for traits of interest (Domyan et al. 2014; Kronenberg et al. 2015). 

Here we present the Cliv_2.1 reference assembly and an updated gene annotation set. The new assembly greatly improves scaffold length over the previous draft reference assembly, and updated gene annotations show improved concordance with both transcriptome and protein homology evidence.

Read the full article as it appears in G3.

System Status

General Environment

last update: 2024-04-26 10:31:04
General Nodes
system cores % util.
kingspeak 774/972 79.63%
notchpeak 3050/3212 94.96%
lonepeak 1260/3116 40.44%
Owner/Restricted Nodes
system cores % util.
ash 48/1152 4.17%
notchpeak 17828/18328 97.27%
kingspeak 3529/5340 66.09%
lonepeak 16/416 3.85%

Protected Environment

last update: 2024-04-26 10:30:03
General Nodes
system cores % util.
redwood 41/616 6.66%
Owner/Restricted Nodes
system cores % util.
redwood 1782/6280 28.38%


Cluster Utilization

Last Updated: 2/20/24